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Abstract of Dissertation

In this work, computational methods for the purpose of sequence function
prediction based on molecular evolution were developed and tested.

When analyzing molecular sequences using sequence similarity searches,
orthologous sequences (diverged by speciation) are more reliable predictors of
biological function than paralogous sequences (diverged by gene duplication),
because duplication enables functional diversification. The utility of phylogenetic
information in high-throughput genome annotation (“phylogenomics”) is widely
recognized, but existing approaches are either manual or indirect (not based on
phylogenetic trees). Therefore, a procedure for automated phylogenomics using
explicit phylogenetic inference was produced.

At the center of a phylogenomic approach stands the inference of gene
duplications by comparing the gene tree containing the sequence to be analyzed
to a trusted species tree. An algorithm for this purpose was developed. This
algorithm exhibits an inferior worst case behavior compared to previously
published ones but appears to be superior in most practical cases, partially due to
its simplicity.

A major caveat of all phylogenetic analyses is the unreliability of the
resulting trees. Therefore, inference of gene duplications is performed over
bootstrap-resampled phylogenetic trees to estimate the reliability of the
orthology assignments. Additionally, supplementary measures extending the
concepts of orthology and paralogy were introduced and assessed for their

effectiveness in functional prediction.



The phylogenomic approach developed in this work was tested on the
proteomes of the flowering plant Arabidopsis thaliana and the nematode
Caenorhabditis elegans. It appears that this approach is particularly useful for

the automated detection of first representatives of novel protein subfamilies.

xi



“Nothing in biology makes sense except in the light of evolution.”

Theodosius Dobzhansky (1900-1975)



1 Introduction



1.1 Scope of Thesis

The scope of this thesis is the development and evaluation of
computational methods for analyzing the biological roles of protein sequences
using concepts from the field of molecular evolution.

The following three main components were developed in the course of this
work:

ATV: A program for the display of annotated phylogenetic trees as a tool
for studying large gene trees. The resulting publication makes up chapter 2 of this
dissertation.

SDI: An algorithm to determine which nodes on a phylogenetic tree
represent gene duplications. The resulting publication makes up chapter 3.

RIO: Resampled Inference of Orthologs: This is a package of programs for
the automated analysis of protein sequences by phylogenetic methods. The
resulting publication makes up chapter 4.

At the center of the methods described in this thesis stands the inference
of gene duplications by comparing the gene tree containing the sequence to be
analyzed to a trusted species tree. An algorithm for this purpose (“SDI”) has been
developed and analyzed.

A major caveat of all phylogenetic analyses is the unreliability of the
resulting trees. Therefore, inference of gene duplications is performed over
bootstrap resampled phylogenetic trees to estimate the reliability of the orthology

assignments. “RIO” is a package which bundles programs for these purposes.



1.2 Sequence Function Analysis

In 1977, the genome of the bacteriophage ®X174 was determined by the
emerging technology of DNA sequencing (Sanger et al., 1977). After two decades
of technology development, the genome of Haemophilus influenza was reported
in 1995 (Fleischmann et al., 1995) as the first complete bacterial genome. Now,
the genomes of three metazoans, human (Lander et al., 2001; Venter et al., 2001),
the nematode Caenorhabditis elegans (C.elegans-Sequencing-Consortium,
1998), and the fruit fly Drosophila melanogaster (Adams et al., 2000), the
flowering plant Arabidopsis thaliana (Arabidopsis-Initiative, 2000), the yeast
Saccharomyces cerevisiae (Goffeau et al., 1996), as well as those of many
Bacteria and Archaea are known (Doolittle, 1998). For a constantly updated list
of published microbial genomes and microbial genomes in progress see
[http://www.tigr.org/tdb/mdb/mdbcomplete.html].

This information will lead toward a basic understanding of the
fundamental problems in life sciences, as well as stimulation of practical
applications in medical, pharmaceutical, and agricultural sciences. However, the
sequence data obtained by genome sequencing projects do not by themselves
provide direct answers to such fundamental problems or practical applications.
The sequencing of a genome is an easier task than the understanding of
functional implications of when, where, and most importantly, how genes and

molecules function and interact in organisms.


http://www.tigr.org/tdb/mdb/mdbcomplete.html

1.2.1 Most functional predictions for
uncharacterized genes are based on sequence

similarity

Functional predictions based on sequence similarity are widely used. The
most simple method is based on the highest scoring hit (the “top one hit”). The
uncharacterized sequence is assigned the function of the sequence that is
identified as having the highest degree of similarity by a similarity search
program like BLAST (Altschul et al., 1990) For example, the Helicobacter pylori
genomic sequence has been analyzed in such a way (Tomb et al., 1997). Another
method is based on examining a certain number of top hits. Depending on the
degree of consensus of the genes identified as having the highest degree of
similarity, the query sequence is assigned a specific function, a general activity, or
an unknown function. The Escherichia coli genomic sequence has been analyzed
this way (Blattner et al., 1997). The predicted coding regions with putative
identifications are typically assigned biological roles with the classification

system adapted from Riley (1993).

1.2.2 Functional predictions based on

sequence similarity fail in certain cases

Sequences can be similar due to convergence or homology. Homologs are

sequences which share a common ancestor, whereas convergent sequences lack a



common evolutionary history. Homologs can be divided into orthologs and
paralogs. Orthologs are homologous sequences that diverged from each other by
speciation. Paralogs are homologous sequences that diverged from each other by
gene duplication (for more detailed information see section 1.3.2.1). It follows
that there are at least three difficulties with functional predictions based on
sequence similarity. First, sequence similarities can be due to convergence and
therefore not necessarily indicate functional similarity. This problem can be
partially overcome by just considering similarities that are too high to be due to
convergence (although a threshold for such an inference is not well established).
Second, sequences can have a high degree of sequence similarity without fulfilling
the same biological role; this is particularly likely for paralogous sequences. An
example of this is L-lactate dehydrogenase (EC 1.1.1.27) and malate
dehydrogenase (EC 1.1.1.37). These two enzymes are thought to have evolved
from a common ancestor (Golding and Dean, 1998). They share a high degree of
sequence similarity (BLASTP E-value is in the range of 5.0x107) but have
different substrate specificities and therefore different biological roles. (See
Figures 4.1 and 4.2 later in this work for illustrations of how paralogy combined
with gene loss or database bias and/or unequal rates of evolution can lead to
erroneous predictions if only sequence similarity is considered.) Third,
homologous sequences can diverge so much that sequence similarities are
difficult to detect.

In addition, we need to consider that no clear definition for sequence
“function” exists. Depending on the sequences studied and the methods used,

predictions with different levels of resolution will result. Functional prediction



can be understood as a rough classification of proteins according to the “class” of
reaction catalyzed, such as hydrogenases, kinases, etc. A more detailed
classification also includes information about substrates, products, and cofactors.
An example of such a classification is the EC-number system. In the EC (Enzyme
Commission) nomenclature, enzymes are principally classified and named
according to the reaction they catalyze. The enzymes are divided into hierarchical
groups where group membership is encoded into a code of four numbers. The
first number shows to which of the six main divisions the enzyme belongs (EC 1. -
oxidoreductases, EC 2. - transferases, EC 3. - hydrolases, EC 4. - lyases, EC 5. -
isomerases, EC 6. - ligases). The second number indicates the subclass (e.g. EC
1.1.: oxidoreductases acting on the CH-OH group of donors). The third number
gives the sub-subclass (e.g. EC 1.1.1.: oxidoreductases acting on the CH-OH group
of donors with NAD+ or NADP+ as acceptor). The fourth number is the serial
number of the enzyme in its sub-subclass (e.g. EC 1.1.1.145: 3B-hydroxy-As-
steroid dehydrogenase, EC 1.1.1.146: 113-hydroxysteroid dehydrogenase) (Webb,
1992). A database of EC-numbers is available at
[http://www.chem.gqmw.ac.uk/iubmb/enzyme/]. An even more detailed
functional description might include explicit information about the temporal and
spatial expression (during development and/or in response to external stimuli),
sub-cellular localization, regulatory properties (inhibitors and activators),
biochemical properties such as Km, Vmax, temperature and pH optimum, etc. A
very promising approach is gene ontologies which are controlled vocabularies to

describe sequences (somewhat similar to the EC-number system, but not limited


http://www.chem.qmw.ac.uk/iubmb/enzyme/

to enzymes and biochemistry) (Gene-Ontology-Consortium, 2001). For more

information, see [http://www.geneontology.org/].

1.2.3 Phylogenomic methods might allow
accurate functional predictions in cases where

similarity based methods fail

Although sequence similarity based methods for functional prediction are
very fast, readily automated, and usually sufficiently accurate, per se they make
use of phylogenetic information no more than indirectly — as an array of
numerical values instead of a tree-topology. Ignoring the tree-topology can lead
to inaccurate predictions in certain situations (for example in sequence families
where paralogs with different functions are present combined with gene loss or
incomplete databases).

On the other hand, methods based on sequence or motif family profiles are
very robust but, oftentimes, the resulting annotations are too broad (e.g. a new
sequence might be annotated just as “kinase”). An example of this approach is
using the HMMER software (Eddy, 2000) to search the protein domain database
Pfam (Bateman et al., 2000).

Another approach for improved functional prediction are methods based
on catalytic key residues (or sequence patterns). Identification of the amino acids
responsible for the reaction catalyzed for each type of reaction would allow to

make inferences about the catalytic activity of unknown sequences by pattern


http://www.geneontology.org/

matching. Unfortunately, such methods require intimate knowledge about each
catalytic mechanism. In addition, by just concentrating on the key residues, all
the information buried in the rest of the sequence is not utilized, and therefore
the resolution of methods based on key residues is expected to be rather limited.
An example of a database containing patterns (and profiles) is the PROSITE
database (Bairoch et al., 1997) [http://ca.expasy.org/prosite/]. But this database
does not necessarily concentrate on the catalytically important residues, it is a
collection of any type of pattern or profile which can be used for the classification
of sequences.

Realizing these shortcomings, Tatusov et al. (1997; 2001) developed the
Clusters of Orthologous Groups (COGs) method
[http://www.ncbi.nlm.nih.gov/COG/]. This method is based on the assumption
that orthologs are more similar to each other than they are to paralogs. The
procedure to construct COGs starts with building groups of three sequences from
three different species, whose members are reciprocal best hits to each other, and
therefore assumed to be orthologs. This is done for all possible combinations of
three species. Then, groups which share two members are merged into larger
COGs until no more of such mergers are possible. The expectation is that each
COG consists of individual orthologs or orthologous groups of paralogs from
within the same species (i.e. no speciations after duplications). Each COG is
assumed to have evolved from an individual ancestral gene through a series of
speciation and duplication events. The COG method is probably superior to
simpler sequence similarity based methods but it still does not use the power of

phylogenetic analysis since clustering is a way of classifying levels of similarity


http://ca.expasy.org/prosite/
http://www.ncbi.nlm.nih.gov/COG/

and is not an accurate method of inferring evolutionary relationships (Swofford
et al., 1996).

In order to obtain more reliable functional predictions, one might
incorporate explicit evolutionary relationships into sequence function prediction
methods. One way to accomplish this goal is by creating a phylogenetic tree of all
homologs. The topology of the tree will allow the distinction between orthologs
and paralogs by comparing with the species tree. The likely function of the
sequences of interest can then be inferred by overlying the known function onto
the tree. This approach has been termed phylogenomics by Eisen (Eisen,
1998a; Eisen, 1998b; Eisen, 2001; Eisen and Hanawalt, 1999; Eisen et al., 1997;
Eisen et al., 1995).

It is the goal of this work to extend and automate phylogenomics. The rest
of chapter 1 discusses the background of molecular evolution and methods for

phylogenetic tree inference.
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1.3 Molecular Evolution

Molecular evolution is the study of the evolution of macromolecules. This
section is a review of some key concepts from this large field of study. A brief
overview of the history of molecular evolution and its most important concepts
and controversies is followed by a discussion of the mechanisms of protein
evolution (for reviews see Avise, 1994; Li, 1997; Nei, 1987; Page and Holmes,
1998). In particular, the concept of gene duplication and its significance for
protein function evolution are introduced here. The next section (1.4) discusses

methods for the reconstruction of evolutionary histories of macromolecules.

1.3.1 Historical Background

The study of molecular evolution began at the turn of the twentieth
century. Studies in immunohistochemistry showed that serological cross-
reactions were stronger for more closely related organisms than for less related
ones. Nuttal (1904) used immunohistochemistry to infer that, for example, man’s
closest relatives were the apes. Yet, intense research in molecular evolution
started only in the 1950s, due to the introduction of new techniques such as
protein sequencing, tryptic fragment pattern analysis, starch-gel electrophoresis,
and improvements in immunohistochemistry (e.g. Brown et al., 1955;
Zuckerkandl et al., 1960). In particular, Zuckerkandl and Pauling (1962; 1965b)
showed that the characters in molecular sequences can contain a large amount of

information (“molecules as documents of evolutionary history”). Many studies in
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the 1960s were centered around the molecular evolution of humans, apes, and
primates in general (e.g. Goodman, 1962). By then, the amino acid sequences of a
variety of proteins such as hemoglobins and cytochromes ¢ had been determined
(e.g. Margoliash et al., 1968). Comparative studies of these sequences revealed
that the rate of amino acid substitution in each of these sequences was
approximately the same among different lineages. This lead to the proposal of a
molecular clock (Zuckerkandl and Pauling, 1962; Zuckerkandl and Pauling,
1965a), a theory which is controversial to this day (Ayala, 1999; Tajima, 1993;
Zuckerkandl, 1987).

An unexpectedly high rate of evolution in terms of nucleotide substitutions
led Kimura (1968a; 1968b) to propose the neutral theory of evolution. King
and Jukes (1969) published a similar idea, although from a more biochemical
perspective. The neutral theory claims that molecular evolution is dominated by
genetic drift of neutral mutations which have no selective cost. In other words,
the neutralists model states that majority of mutations are deleterious and
quickly removed by negative selection. The majority of fixed mutations are
neutral, and only a small percentage is advantageous (summarized in Kimura,
1983; Kimura, 1991). The opposing argument is that the natural selection of
advantageous mutations is the more important force in molecular evolution
(King, 1972). In this model, the majority of the fixed mutations are advantageous.
The nearly neutral theory has been proposed by Ohta (1973) to explain the
fact that the level of heterozygosity observed is oftentimes not as high as expected
under the neutral theory. The nearly neutral theory claims that the majority of

fixed mutations are either neutral or slightly deleterious (or slightly
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advantageous) (reviewed in Ohta, 1992a; Ohta, 1992b; Ohta, 1996). The
selection-neutrality debate has not been settled, even though the neutral (or
nearly neutral) theory is oftentimes considered the null-model which has to be
rejected before other, more specialized, models can be entertained (Moritz and

Hillis, 1996; Ohta, 1996).

1.3.2 Mechanisms of Protein Evolution

Gene duplication and domain shuffling are important mechanisms for
generating novel biochemical and regulatory functionality (Lynch and Conery,
2000; Ohno, 1970). In particular, gene duplication might have been the primary
mechanism for the evolution of complexity in higher organisms (Miklos and
Rubin, 1996; Ohta, 1991). This section reviews these two related mechanisms and

introduces some important definitions.

1.3.2.1 Gene Duplication

It is generally supposed that new genes evolve if mutations accumulate
while selective constraints are relaxed by gene duplication (Kimura, 1983; Ohno,
1970). The importance of gene duplication for evolution has probably first been
recognized by Haldane (1932) (“... it [mutation pressure] will favour polyploids,
and particularly allopolyploids, which possess several pairs of sets of genes, so
that one gene may be altered without disadvantage...”, p. 194) and Muller (1935;

1936). Cytological studies of the fruit fly Drosophila melanogaster showed that
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certain banding patterns appear duplicated, illustrating “the manner of
origination of extra genes in evolution”. Serebrowsky (1938) was the first to
formulate a hypothesis of the possible steps involved (although his interpretation
only attempted to explain a specialization in function and did not include the
acquisition of new functions). Stephens (1951) concluded that “theoretically,
duplication of loci would appear to offer a means of gaining a new function
without losing the old one”, yet he was unable to find a convincing example in the
available data. In the early 1960s the amino acid sequences for human
hemoglobins became available (e.g. Konigsberg et al., 1961). Comparing the
amino acid sequences of human myoglobin, and hemoglobins a, B, y, and & led
Ingram (1961) to propose a model where myoglobin and the hemoglobins form a
family of homologous proteins, and are related to each other by gene duplication
events, similar to the illustration in Figure 1. [Homologs are defined as
sequences which share a common ancestor (Fitch, 1966). This definition becomes
unclear if mosaic proteins, which are composed of structural units originating
from different genes (section 1.3.2.2), are considered.] These studies led Ohno
(1970) to conclude that gene duplication is the only means for the creation of new
genes. Even though it is now known that there are other means for creating new
genes or new functionality, gene duplication is still considered the most
important one (Doolittle, 1995; Miyata et al., 1994; Ohta, 1989a). [Other means
for creating new functionality include: alternative splicing (Smith et al., 1989),
RNA editing (Chan, 1993), overlapping genes such as tRNA genes on
complementary strands of a DNA sequence (Anderson et al., 1981), and genes

with more than one function or “gene sharing” (Piatigorsky et al., 1988) or “gene
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recruitment” — a fascinating example for this are the crystallins which are
responsible for the transparency of the eye lens but which also act as enzymes,
catalyzing a variety of biochemical reactions. Crocodile & crystallin for example
also serves as lactate dehydrogenase, bird § crystallin also has argininosuccinate
lyase functionality; for a complete list see Wistow (1993).] More recent studies on
gene duplication concentrate on the simulation of duplications and the
corresponding population genetic models (e.g. Gu, 1999; Gu, 2001; Ohta, 1987;
Ohta, 1988a; Ohta, 1988b; Ohta, 1989b). Recently, the significance of
duplications has also been studied using artificial life simulations (Calabretta et
al., 2000). The result of these studies appear to confirm the ideas presented in
this section.

Duplications may affect a part of a gene (partial or internal gene
duplication or possibly domain duplication), a complete gene (complete gene
duplication), parts of a chromosome, a complete chromosome, or a whole
genome (Lander et al., 2001; Sankoff, 2001; Venter et al., 2001). For example, a
current (controversial) theory suggests that vertebrates underwent two rounds of
whole genome duplication (e.g. Friedman and Hughes, 2001; Meyer and Schartl,
1999).

Possible mechanisms for gene duplication include (Fitch et al., 1991;
Lander et al., 2001; Ohta, 1989a; Venter et al., 2001): unequal crossing-over
(recombination between nonallelic genes caused by misalignment of
chromosomes during meiosis which leads to one chromosome with a duplication
and to one with a deletion), gene conversion [exchange of strands between DNA

molecules (originally proposed in Holliday, 1964; reviewed in Szostak et al.,
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1983)], errors during recombination and repair, and retrotransposition (resulting
in intronless gene copies).

Internal gene duplications result in gene elongation (Eck and Dayhoff,
1966), which is an import mechanism for evolving complex genes from simple
ones (similar to domain shuffling, see below). An example of a gene arisen by
internal duplications is the a2 type I collagen gene. 42 of its 52 exons contain
multiples of the 9 basepairs coding for the triplet Gly-X-Y. It is likely that these
42 exons arose from one exon by multiple internal duplications (Li, 1983;
Yamada et al., 1980). For a slightly curious example of a two domain hemoglobin
in a water flea caused by internal duplication, see Kato et al (2001). Internal gene
duplications can also lead to specific integrated assemblies such as p-propellers
and B-trefoils (Andrade et al., 2001).

All other types of duplications (other than internal gene duplications)
result in two identical copies of each duplicated gene. As indicated above, one
copy may acquire mutations or become subject to domain shuffling (section
1.3.2.2) and eventually assume a different biological role (or become silenced by
deleterious mutations) (Lynch and Conery, 2000). Several examples are known
in which amino acid substitution in duplicated genes is accelerated relative to
synonymous substitutions (Ohta, 1991; Ohta, 1993; Ohta, 1994). It is also
possible that the duplicated copies are simply used to increase the amount of
gene product (rRNA genes, for example).

Multiple gene duplications lead to gene families (Dayhoff, 1976). For
examples of gene families see Figures 1.1 and 1.6. Multiple gene duplications

combined with exon shuffling lead to super families. For the purpose of this
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work, gene families are defined as families of genes which have one common
ancestor (and are therefore homologs) and which exhibit the same domain
organization (“end to end similarity”). The term family is also used for individual
domains with a common ancestor. Super families are defined as groups of genes
containing at least one structural unit of common evolutionary origin (Go, 1981).
Homologous sequences can be divided into orthologs, paralogs and
xenologs (for examples see Figure 1.2). Orthologs are defined as two sequences
which diverged by a speciation event (their last common ancestor on a
phylogenetic tree corresponds to a speciation event). Paralogs are defined as
two sequences which diverged by a duplication event (their last common ancestor
corresponds to a duplication) (Fitch, 1970). Xenologs are defined as two
sequences which are related to each other by horizontal gene transfer (via
retroviruses, for example) (Gray and Fitch, 1983). [Some common
misconceptions surround the concepts of orthology and paralogy. For example, a
common mistake is the assumption that in order for two sequences to be
paralogous to each other, they have to occur in the same species. For a review of

these issues see Jensen (2001).]
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o subfamily

B subfamily

Y

Myoglobin

Figure 1.1. The evolutionary history of human globin genes.

A gene tree for the globin o and [} subfamilies, as well as myoglobin is shown. Circled nodes

indicate gene duplication events. From Li (1997). For more information on trees, see section 1.4.1.

—— MOUSE A

— HUMAN A

RAT B

YEAST X1

YEAST X2

Figure 1.2. Examples of orthologs and paralogs.

Circled nodes indicate gene duplication events. Mouse and human A are orthologous to yeast X,
and X. (lowest common ancestor is a speciation event). Mouse and human A are paralogous to rat
B (lowest common ancestor is a duplication event). Rat B and yeast X; and X, are orthologous
(their lowest common ancestor is a speciation event). Yeast X; and X, are paralogous to each

other. Mouse A and human A are orthologous to each other.
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1.3.2.2 Domain Shuffling

Domain shuffling is another mechanism in addition to point mutations
which can lead to modification of protein function. Domain shuffling can be
divided into two types: domain duplication and domain insertion (also called
domain recruitment) (Li, 1997). Domain duplication describes the duplication of
one or more domains and is a type of internal duplication discussed above.
Domain insertion leads to mosaic proteins, proteins composed of domains (or
structural subunits) originating from different proteins (Doolittle, 1985;
Doolittle, 1995; Patthy, 1987; Patthy, 1991). An example for a mosaic protein is
tissue plasminogen activator (TPA) (see Figure 1.3). TPA converts plasminogen
into plasmin, a serin protease which in turn lyses fibrin in blood clots (van
Zonneveld et al., 1986). TPA is composed of four structural domains: one finger
module originating from fibronectin (function: binding of fibrin to activate TPA),
one growth factor module from epidermal growth factor (function: stimulation of
cell proliferation), and two kringle modules from plasminogen (function: binding
of clot proteins) (Patthy, 1985). For more examples see Doolittle (1995).
Interestingly, it has been proposed to use domain shuffling for the rational design

of novel protein functions (Ostermeier and Benkovic, 2000).
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finger modules
fibronectin = - - —jE—EEEE—— - - -

tissue plasminogen activator

epidermal growth factor - -—| NN - - -
growth factor modules

plasminogen = = = — NN - - -
kringle module

Figure 1.3. Tissue plasminogen activator is a mosaic protein.
TPA is the result of domain shuffling and is composed of four structural domains: one finger
module from fibronectin, one growth factor module from epidermal growth factor, and two

kringle modules from plasminogen (Patthy, 1985).
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1.4 Phylogenetic Inference Based on

Molecular Sequences

A phylogeny is the evolutionary history of a species or a group of species.
Lately, the term is also being applied to the evolutionary history of individual
DNA or amino acid sequences. This section discusses some of the methods and
models used for the reconstruction of phylogenies based on sequence data (for
the most, part amino acid sequences). In particular, the background for the tree
building algorithms used in chapter 4 are introduced here. For reviews see
Durbin et al. (1998), Felsenstein (1982; 1988; 1996), Nei (1996), Page and

Holmes (1998), Saitou (1996), and Swofford et al. (1996).

1.4.1 Phylogenetic Trees

The evolutionary history of organisms or sequences can be illustrated
using a tree-like diagram — a phylogenetic tree. For an example, see Figure 1.4,
showing a phylogenetic tree proposed in 1866 by Haeckel (1866).

A phylogenetic tree is a representation of the evolutionary relationships
among a set of sequences, species or populations. The tree is a kind of graph and
is composed of branches (edges) and nodes (vertices). Nodes are divided into
internal and external ones. The external nodes are also called operational
taxonomic units (OTUs), leaves, or tips. Typically, the external nodes correspond

to contemporary sequences, species, or populations.
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Branch lengths might be according to time or evolutionary distance, or the
tree simply represents the evolutionary relationships and branch lengths are
arbitrary (as in the trees shown in Figures 1.5 and 1.6).

Phylogenetic trees can either be completely binary, which means that each
node has two child nodes (bifurcation or dichotomy), or they can contain
multifurcations or polytomies (more than two children per node).
Multifurcations are used to express radiations and/or uncertainties about the tree
topology (Hennig, 1966).

A tree can be either rooted if the direction of time is known or unrooted if
the direction of time is unknown. A rooted tree has a special internal node, called
the root which is defined as the position of the common ancestor.

A unrooted completely binary tree with N external nodes has 2N-3
branches, and N-2 internal nodes. A rooted completely binary tree with N
external nodes has 2/N-2 branches, and N-1 internal nodes.

The number of different tree topologies increases rapidly with an increase
in number of external nodes. The general equation for the possible number of
topologies for unrooted completely binary trees (7) with N (>2) external nodes is

(Cavalli-Sforza and Edwards, 1967):

(2N -35)
2V (N -3)

Tp
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For example, there are 221,643,095,476,699,771,875 different unrooted tree

topologies with 20 external nodes.
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Figure 1.4. A phylogenetic tree proposed by Haeckel (1866).
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1.4.1.1 Gene Trees and Species Trees

Initially, phylogenetic trees were built based on the morphology of
organisms. Around 1960 molecular sequences were recognized as containing
phylogenetic information and hence as valuable for tree building (section 1.3.1)
(Zuckerkandl and Pauling, 1962; Zuckerkandl and Pauling, 1965b). A tree built
based on sequence data is called a gene tree since it is a representation of the
evolutionary history of genes, as opposed to organisms. Figures 1.1, 1.5, and 1.6
are illustrations of gene trees. A tree illustrating the evolutionary history of
organisms is called a species tree (the tree in Figure 1.4 is a species tree based
on morphology). In general, a gene tree does not reflect the evolutionary history
of all the host species associated with the genes in the tree, as in Figure 1.6. This
is due to the presence of gene duplications. Only in the complete absence of

duplications can a gene tree correspond to a species tree, as shown in Figure 1.5.
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IL3_PANTR

IL3_HUMAN

IL3_HYLLA

IL3_MACMU

— IL3_RAT

— IL3_MOUSE

— IL.3_SHEEP

— IL3_BOVIN

Figure 1.5. A gene tree of orthologs based on Interleukin-3 protein

sequences.

Sequences are named with their SWISS-PROT identifiers. PANTR stands for Pan troglodytes
(chimpanzee), HYLLA for Hylobates lar (common gibbon), MACMU for Macaca mulatta (rhesus
macaque), BOVIN for Bos taurus. The tree is based on the Pfam (Bateman et al., 2000) alignment
for Interleukin-3 (Accession number: PF02059) (Burger et al., 1994). The tree was constructed by
neighbor joining (section 1.4.2.5.2) from Felsenstein’s PHYLIP package (Felsenstein, 2001). The
distance used for neighbor joining were PAM-based maximum likelihood distances (section
1.4.2.2), calculated by PROTDIST from PHYLIP. The tree diagram was produced by ATV (chapter
2) (Zmasek and Eddy, 2001a).
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BAXA_MOUSE
BAXA_RAT
BAXA_HUMAN
BAXB_HUMAN
BAXA_BOVIN
BAXD_HUMAN
— BCLX_MOUSE
— BCLX_RAT
BCLX_HUMAN
BCLX_PIG
BCLX_CHICK
AR11_XENLA

BCL2_MOUSE

—EBCLZ_RAT
BCL2_HUMAN

L BCL2_CHICK
BCLW_HUMAN
BCLW_MOUSE
AR1_XENLA

—CED9_CAEEL
L CEDY_CAEBR

BAK_HUMAN
BAK2_HUMAN
BAK_MOUSE
BFL1_HUMAN
BFL1_MOUSE
MCL1_HUMAN

Figure 1.6. A gene tree of orthologs and paralogs based on Bcl-2 family
protein sequences.

Circled nodes indicate gene duplication events. BOVIN stands for Bos taurus, XENLA for
Xenopus laevis, CAEEL for Caenorhabditis elegans, CAEBR for Caenorhabditis briggsae. The
tree is based on the Pfam (Bateman et al., 2000) alignment for the apoptosis regulator proteins of
the Bcl-2 family (Accession number: PF00452) (reviewed in Chao and Korsmeyer, 1998). The tree
was constructed in the same manner as described for Figure 1.5. The speciation duplication
inference algorithm SDI (chapter 3) (Zmasek and Eddy, 2001b) was used to determine the
positions of the gene duplications. The tree diagram was produced by ATV (chapter 2) (Zmasek
and Eddy, 2001a).
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1.4.2 Methods for Phylogenetic Inference

Phylogenetic methods differ both in the type of input data and in the
actual tree building method. The input data falls into one of two categories:
discrete characters states, and similarities or distances. Discrete characters states
include molecular sequence data, restriction endonuclease data, gene order data,
or morphological character states. Similarities or distances are either measured
directly (with hybridization experiments, for example), or discrete characters
states are transformed into distances (section 1.4.2.2). In this work, the focus is
on molecular sequence data (protein sequences). Trees are either built by an
algorithmic method, which usually will yield one tree, or optimality criteria are
used to evaluate the “likelihood” of a given tree or to select the “most likely” tree
out of a set of given trees.

Before individual tree building methods are discussed, a historical
overview is presented.

Initially, phylogenetic trees were built intuitively based on the morphology
of organisms (as in Figure 1.4). In 1950, Hennig (1950; 1965; 1966) stated a
systematic procedure (“Hennig’s method”) for inferring phylogenies from a set
of morphological characters (“the rules for evaluating morphological characters
as indicators of degree of phylogenetic relationship”). In this approach,
hierarchical monophyletic groups of species (i.e. trees) are constructed based on
knowledge of which states are ancestral (“plesiomorphous”) and which ones are

derived (“apomorphous”). A weakness of Hennig’s method is that it cannot deal
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with conflicting data. Although Hennig is well known for stating this approach, it
had been applied previously (e.g. Mitchell, 1901).

Sokal and Sneath, where among the first to develop objective schemes for
measuring the pairwise distance (similarity) between organisms (and to use
computers to do so) (Sneath, 1957a; Sneath, 1957b; Sneath and Sokal, 1962;
Sneath and Sokal, 1973; Sokal, 1956; Sokal, 1961; Sokal and Sneath, 1963). For
example, to calculate a mean squared difference between two species, Sokal

(1961) proposed the following formula:

n

Z(lxi—2xi)2 (1-2)

» 1
51,2 =
ni-

where 'X; is the state code for species 1 for character i, and » is the number of
characters. Similar formulas have been proposed earlier, in particular to measure
the resemblance among anthropological material (mostly skulls) (e.g. Pearson,
1926). Especially, Rao (1952) used an intuitive approach to cluster analysis (see
below) to produce tree-like diagrams of Indian tribes (based on anthropometrical
characters).

Using pairwise distances between taxa as input, the UPGMA algorithm
(section 1.4.2.5.1) presented by Sokal and Michener (1958) clusters according to
average similarity. The resulting clusterings correspond to a phylogenetic tree
under the assumption of a molecular clock (see above).

Parsimony methods (section 1.4.2.4.1) on continuous data were

introduced by Edwards and Cavalli-Sforza (1963; 1964) in an effort to use gene
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frequencies to make a phylogeny of human populations. Edwards and Cavalli-
Sforza (1964) also introduced the maximum likelihood method (section
1.4.2.4.2), with gene frequencies as data.

Doolittle and Blomback (1964) used the number of amino acid changes in
the sequences of fibrinopeptides from various artiodactyls to manually construct
a phylogenetic tree.

Edwards and Cavalli-Sforza (1965) introduced a systematic method for
cluster analysis which minimizes the within-cluster sum of squares of
distances. It starts with all elements as members of the same cluster and proceeds
to subdivide that cluster into successively smaller ones until each element is the
only member of its own cluster. As an example, they applied their method to the
same morphological data of Indian tribes as Rao (1952) to produce tree diagrams.

The first discrete character parsimony (section 1.4.2.4.2) method was
introduced by Camin and Sokal (1965). Eck and Dayhoff (1966) were the first to
devise a parsimony method for protein sequence data, which they employed to
construct trees for cytochrome c and globins.

In 1967, both Fitch and Margoliash (1967), and Cavalli-Sforza and
Edwards (1967) presented least squares methods (section 1.4.2.3.1) which
find the optimal tree by minimizing the differences between the observed
distances and the distances on the tree.

Neyman (1971) was the first to apply maximum likelihood to molecular
sequences.

In the last 30 years, many more methods for phylogenetic inference based

on molecular sequences have been published. Many of them are reviewed in
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Durbin et al. (1998), Felsenstein (1982; 1988; 1996), Nei (1996), Page and
Holmes (1998), Saitou (1996), and Swofford et al. (1996). Some of the major

methods will be discussed later in the chapter.

1.4.2.1 Multiple Sequence Alignment

Before a tree building or evaluation approach can be applied on molecular
sequences, the sequences in question have to be aligned. The quality of the
multiple alignment will determine the quality of the tree. In other words, the
alignment should reflect biology (positional homology) (Swofford et al., 1996).

Up until 1987, it was standard practice to construct multiple alignments
manually. This is obviously very tedious and error prone. Early computer
programs for multiple alignments were either too slow (such as standard
dynamic programming approaches (Durbin et al., 1998) if more than three or
four sequences were to be aligned) or not widely used [such as methods based on
trying to find an alignment block or establishing a consensus sequences in a
iterative manner (e.g. Bains, 1986; Johnson and Doolittle, 1986; Sobel and
Martinez, 1986)]. More practical methods are based on a idea by Sankoff (1975)
(progressive alignment). Progressive alignment starts with making an initial
guess (guide tree) about the phylogenetic relationship of the sequences to be
aligned. Then, it uses the branching order of this initial phylogenetic tree to align
the sequences, starting with the most closely related pairs, and then gradually
aligns these groups together. There are many variations of this approach, most of

them using various heuristics to improve the basic progressive alignment (e.g.
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Corpet, 1988; Feng and Doolittle, 1987; Gribskov et al., 1987; Hein, 1989).
Currently, the most widely used programs for multiple alignment are CLUSTAL
W (Thompson et al., 1997; Thompson et al., 1994) and PILEUP (Wisconsin
Package; Genetics Computer Group, Madison, WI). CLUSTAL W uses neighbor
joining (section 1.4.2.5.2) to build the guide tree, whereas PILEUP uses UPGMA
(section 1.4.2.5.1). Various multiple sequence alignment programs are compared

in Thompson (1999).

1.4.2.2 Pairwise Protein Distance Calculation

All possible pairwise distances have to be calculated from a multiple
sequence alignment (section 1.4.2.1) prior to any tree building method or
optimality criterion based on pairwise distances. Most textbooks do an excellent
job at describing this and the corresponding models for DNA sequences (e.g.
Swofford et al., 1996). Thus, and because this work concentrates on proteins, only
amino acids sequences are considered in this section. For a review of some of the
ideas presented here, see Lio and Goldman (1998).

The simplest method to measure the distance between two amino acid
sequences is by their fractional dissimilarity p, defined as follows:

nq

p=— (1-3)
nd + I’ls

where 7, is the number of aligned sequence positions containing non-identical

amino acids and ng is the number of aligned sequence positions containing
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identical amino acids. Unfortunately, this is unrealistic. For instance, it does not
take into account superimposed changes (multiple mutations at the same
sequence location) and the different chemical properties of amino acids (for
example, changing leucine into isoleucine is more likely and should be weighted
less than changing leucine into proline). To take into account superimposed
changes, we can model amino acid substitution as a Poisson process (see section
1.4.2.4.2) (Nei, 1987), and calculate the distance between two amino acid

sequences as follows:
d= —1n(1 - p) (1-4)

To better approximate distances calculated by Dayhoff et al. (1978), Kimura

(1983) proposed the following correction:

d=—ln(1—p—0.2p2) (1-5)

But even with this correction, realistic distances cannot be expected, in particular
if p is larger than 0.7.

Karlin and Ghandour (1985) proposed a method of weights based on
chemical, functional, charge and structural properties of the amino acids.
Similarly, Feng et al. (1985) proposed weights based on the structural similarities
and the ease of genetic interchange. The problem with models that attempt to
incorporate “real” amino acid similarities is that they are based on groupings
which are still artificial and do not reflection evolutionary processes (Jones et al.,

1992).
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A more realistic approach for estimating evolutionary distances is to apply
maximum likelihood (section 1.4.2.2.1) to empirical amino acid replacement
models, such as the well known PAM transition probability matrices (Dayhoff et
al., 1978), or the BLOSUM matrices (Henikoff and Henikoff, 1992).

A PAM transition probability matrix is composed of 20x20 elements
which correspond to the probabilities for each possible amino acid transition in
one evolutionary time unit (see Table 1.1). The time unit used in the matrix is the
time during which, on the average, one amino acid substitution per 100 residues
takes place. This time unit is also called one PAM, PAM standing for “accepted
point mutation” (“accepted” by natural selection). The PAM1 matrix (the PAM
matrix for the evolutionary time unit of one PAM) has been constructed by
Dayhoff et al. (1978) from empirical data for 71 groups of closely related proteins.
First, phylogenetic trees for each of these groups were constructed by parsimony
(section 1.4.2.4.2). Based on these trees, relative frequencies for substitutions
among various amino acids were inferred. These frequencies were then
normalized into values that represented the probability that 1 amino acid in 100
would undergo change, resulting in the PAM1 matrix shown in Table 1.1. Other

probability matrices for proteins that had undergone x amino acid substitutions
per 100 residues were then derived by multiplying PAM1 by itself x times (see, for

example, Mirsky, 1982), resulting in matrices such as PAM50 or PAM250.
A different approach was used by Henikoff and Henikoff (1992) for the
construction of the BLOSUM matrices. These matrices were derived from local,

ungapped alignments of distantly related protein sequences. Matrices in this
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series are also identified by a number (e.g. BLOSUM250). But in contrast to the
PAM matrices, these numbers refer to the minimum percentage identity of the
blocks of aligned amino acids used for matrix construction.

Many more rate matrices have been developed. Some examples of more
recently developed ones are: the JTT matrix which was built in the same way as
the PAM1 matrix but on larger data sets (Jones et al., 1992), the mtREV matrix
which was built specifically for proteins encoded by mitochondrial DNA (Adachi
and Hasegawa, 1996), the VT matrix (Mueller and Vingron, 2000), and the WAG

matrix (Whelan and Goldman, 2001).

1.4.2.2.1 A maximum Likelihood Approach to Distance

Calculation

The problem of finding the evolutionary distance between two sequences
using rate matrices can be described as follows. Given an instantaneous rate

matrix M (such as PAM1) and an alignment 4 of two sequences a and b, we
would like to determine the “most likely” evolutionary distance or time between a
and b. This is a maximum likelihood approach. The likelihood L of a hypothesis
H (an evolutionary distance, for example) given same data D (an alignment, for

example) is the probability of D given H:

Ly =P(D|H) (1-6)

Maximum likelihood approaches estimate hypotheses (or parameters) by

maximizing L. for a given D.
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In order to apply the maximum likelihood approach to distance

calculations we need to be able to calculate a transition probability matrix P(¢) for
a finite time interval (or evolutionary distance) ¢, given a transition probability
matrix M for a unit of time (such as PAM1); P(1) = M.

According to Kishino et al. (1990) P(¢) is well approximated by:

P(r)=M' =™ (1-7)

where R is a function of the eigenvalues and eigenvectors of M:

A
. 0
R=U . U (1-8)
0
i A2 |
A = %log Pi (1-9)

1- ZfiMii
i=1

20
1->" f,m, corresponds to the number of substitutions in a unit time; f; (i=1,...,20)
i=1

is the normalized frequency of amino acid i (e.g. Table 22 in Dayhoff et al., 1978);

and p; (i=1,...,20) is an eigenvalue of M.

36



U is a matrix whose columns are the eigenvectors u, (i=1,...,20) of M:
U=(ul,...,U20) (1-10)

Components of P(7) can be written as:
20 )
Bi(t)= Y ce™ (1-11)
k=1

where (Adachi and Hasegawa, 1996):
e =UgUy' (1-12)

Using (1-6), we can obtain the maximum likelihood estimate for ¢ through the

Newton-Raphson method or the bisection method (see Press et al., 1992), for

which we need the following derivatives:

d 20 A,
EPU- (1) = kz_lcl-jklke (1-13)
d? 20
EIDU (t) = ZCijkﬂ.ieMk (1-14)
k=1

These calculation can be made more time efficient if an initial guess for ¢ is

provided, possibly by an equation similar to (1-5).
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The resulting distance computation is quite slow, but appears to be
adequate (Felsenstein, 1996). Yet, one unrealistic assumption is still being made:
all amino acid positions are assumed to change at the same rate. A more realistic
model allows for a gamma distribution of evolutionary rates among sites as
described in Jin and Nei (1990) or Nei et al. (1976). Unfortunately this added

realism comes at a huge loss in time efficiency.

ORIGINAL AMINO ACID (i)

Ala Arg Asn Asp Cys GIn Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

A R N D C Q E G H I L K M F P S T w Y v

A | 9867 2 9 10 3 8 17 21 2 6 4 2 6 2 22 35 32 o 2 18

R 1 9913 1 o 1 10 o o 10 3 1 19 4 1 4 6 1 8 o 1

N 4 1 9822 36 o 4 6 6 21 3 1 13 o 1 2 20 9 1 4 1

D 6 o 42 9859 o 6 53 6 4 1 o 3 o o 1 5 3 o o 1

S C 1 1 o 0 9973 o o o 1 1 o o o o 1 5 1 o 3 2
g Q 3 9 4 5 o0 9876 27 1 23 1 3 6 4 o 6 2 2 o o 1
< E 10 o 7 56 o 35 9865 4 2 3 1 4 1 o 3 4 2 o 1 2
% G 21 1 12 1 1 3 7 9935 1 o 1 2 1 1 3 21 3 o o 5
5 H 1 8 18 3 1 20 1 0 9912 o 1 1 o 2 3 1 1 1 4 1
E ) | 2 2 3 1 2 1 2 o 0 9872 9 2 12 7 o 1 7 o 1 33
E L 3 1 3 o o 6 1 1 4 22 9947 2 45 13 3 1 3 4 2 15
8 K 2 37 25 6 o 12 7 2 2 4 1 9926 20 o 3 8 11 o 1 1
i M 1 1 o o o 2 o o o 5 8 4 9874 1 o 1 2 o o 4
E F 1 1 1 o o o o 1 2 8 6 o 4 9946 o 2 1 3 28 o
P 13 5 2 1 1 8 3 2 5 1 2 2 1 1 9926 12 4 o o 2

S 28 11 34 7 11 4 6 16 2 2 1 7 4 3 17 9840 38 5 2 2

T 22 2 13 4 1 3 2 2 1 11 2 8 6 1 5 32 9871 o 2 9

w o 2 o o o o o o o o o o o 1 o 1 0 9976 1 o

Y 1 o 3 o 3 o 1 o 4 1 1 o o 21 o 1 1 2 9945 1

v 13 2 1 1 3 2 2 3 3 57 11 1 17 1 3 2 10 o 2 9901

Table 1.1. PAM1, a transition probability matrix for the evolutionary
distance of 1 PAM.

An element of this matrix, M,

gives the probability that the amino acid in column 7 will be
replaced by the amino acid in row j after a given evolutionary interval, in this case 1 PAM. Thus,

there is a 0.56% probability that Asp will be replaced by Glu. To simplify the appearance, the
elements are shown multiplied by 10,000. Adapted from Dayhoff et al (1978).
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1.4.2.3 Optimality Criteria Based on Pairwise
Distances

Optimality criteria are used to assign a score to a given tree. For tree
reconstruction, all possible trees (or an “appropriate” subset thereof) have to be
proposed by a proposal mechanism and then searched for the tree with the best
score. Many different (heuristic) algorithms for proposing and searching trees
exist. These algorithms are not discussed here. For a review see Swofford et al.
(1996). Since usually a large number of trees have to be evaluated (see equation 1-
1), optimality-criteria based methods tend to be time consuming.

For both optimality criteria as well as for algorithmic methods based on
pairwise distances, it is crucial to establish whether the pairwise distance data is
additive or ultrametric as well — which methods are applicable depends on this
distinction. In the following, the terms additive and ultrametric are defined.

If we could determine the true evolutionary distances from a given
alignment, these distances would have the property of additivity, as illustrated
in Figure 1.7. In this case, a tree exists for which the sum of branch lengths

between each pair of external nodes (e.g. ate+b) precisely equals the
evolutionary distance between them (e.g. d3). Additive distances satisfy the four-

point condition (Buneman, 1971): for any four external nodes A, B, C, and D:
dc+dgp <max(d gz +dcp.d p+dpe) (1-15)

Unfortunately, due to the finite amount of data available, stochastic errors will

prevent the estimated distances from fitting exactly onto a tree. Least squares
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optimality criteria (section 1.4.2.3.1) measure the fit of the estimated evolutionary
distances to an additive tree. Minimum evolution optimality criteria (section
1.4.2.3.2) and the neighbor joining algorithm (section 1.4.2.5.2) assume additivity
in their input data.

Ultrametric distances (Figure 1.7.B) are a subset of additive distances.
They adhere to the three-point condition: for any three external nodes A, B, and

C:
d o <max(d ,5.,dgc) (1-16)

In terms of phylogenetic trees, an ultrametric tree is an additive tree under the
additional constraint of a (constant) molecular clock (see above). The UPGMA
algorithm (section 1.4.2.5.1) constructs an ultrametric tree from ultrametric

distances.
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Additive properties:
dap=a+e+b

dac=a+c

dap=a+e+d
dpc=b+e+c

dpp=b+d

dcp=c+e+d

Additive properties:
dag=a+b

dpc=a+d+c

dgc=b+d+c

Ultrametric properties:
a=b

c=d+a

c=d+b

Figure 1.7. Additive and ultrametric trees.
An additive tree is shown in A. The tree in B also exhibits ultrametric properties. Adapted from
Swofford et al. (1996).
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1.4.2.3.1 Least Squares

An optimal tree according to least squares (and related) criteria is selected
by minimizing the disagreement £ between the tree and the estimated pairwise

distances (estimated from a multiple alignment):

a

(1-17)

N-1 N
E=2 2 wyld;—py
i=1 j=i+l
where N is the number of external nodes, d;; is the distance estimate between
sequences i and j and p; the length of the path connecting external nodes i and j
in the given tree. Setting a=2 represents a least squares criterion. For a=1, the
absolute differences will be minimized. Setting the weighting w;=1 assumes that

all distance estimates are subject to the same magnitude of error and corresponds

to a unweighted least squares criterion (Cavalli-Sforza and Edwards, 1967).

. 1 . .
Setting w, = e assumes that all estimates are uncertain by the same percentage

(Fitch and Margoliash, 1967).
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1.4.2.3.2 Minimum Evolution

By means of the minimum evolution method, branch lengths are fitted to a
tree according to a unweighted least squares criterion, but the optimality
criterion to evaluate and compare trees is to minimize the sum of all branch
lengths L (Kidd and Sgaramella-Zonta, 1971; Rzhetsky and Nei, 1992; Rzhetsky

and Nei, 1993):

L= > (1-18)

where N is the number of external nodes, and b, is a branch length. The

minimum evolution tree is the one which minimizes L.

1.4.2.4 Optimality Criteria Based on Character Data
Character data based methods work directly on molecular sequences and

thus do not require the calculation of pairwise distances.

1.4.2.4.1 Maximum Parsimony

Maximum parsimony criteria are based on the principle of Occam’s razor,
which states “One should not increase, beyond what is necessary, the number of
entities required to explain anything”. The central idea is that the preferred
evolutionary tree requires the smallest number of evolutionary changes to explain

the differences observed among the sequences under study. Hypothetical
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sequences are assigned to the ancestral (internal) nodes in such a way as to
minimize the total number of substitutions. In traditional parsimony (Fitch, 1971)
any substitution is assigned a cost of 1, whereas identical residues have a cost of
0. Weighted parsimony (Sankoff and Kruskal, 1983) assigns different costs to
different types of substitutions. Maximum parsimony is in fact an approximation
to maximum likelihood, as pointed out by Felsenstein (1981b) and reviewed in

Durbin et al. (1998).

1.4.2.4.2 Maximum Likelihood

Probabilistic methods can be used to assign a likelihood to a given tree and
therefore allow the selection of the tree which is most likely given the observed
sequences (Edwards and Cavalli-Sforza, 1964; Felsenstein, 1981a; Kashyap and
Subas, 1974; Neyman, 1971).

The probability for one residue a to change to b in time ¢ along a branch of
a tree is given by P(b|a,f). Its actual calculation is dependent on what model for
sequence evolution is used. The simplest model is a Poisson process, which
assumes that all changes between amino acids occur at the same rate and that the
equilibrium frequencies of all amino acids are equal. The probabilities for this

model are:

44



P(b|a,t)= 1 + Ee_”t fora=b

20 20

11 (1-19)
P(b|a,t)=—+—e ™ fora#b

20 20

where 4 is the substitution rate. In practice, more sophisticated models, such as

the PAM matrices (see above), are usually used (Adachi et al., 1993; Adachi and

Hasegawa, 1992; Strimmer and von Haeseler, 1996).

The likelihood of a tree 7 with branch lengths te, given the observed
sequences xe, can be written as P(xe|7, re) (see Durbin et al., 1998). For one site

(one position in the multiple alignment of xe), the likelihood can be calculated as

follows:
2n-2 n
P(x1,0es %, | Tt 9)= > 9ay,, [1 P(ai |aa(i)’ti)HP(xi |aa(i)’ti)
Ayl sy i=n+l i=1

(1-20)

x,...,x, are the amino acid residues at the n external nodes of 7. o(i) denotes the
parent node of i. P(a;|aq,t;) is the probability of observing residue «; at internal
node i, given a,(; at its parent node and branch length ¢. These probabilities are
multiplied over all internal nodes (labeled from n+1 to 2n-1). P(x;|aq@,t;) is
probability of observing x; at an external node 7, given a,, at its parent node and
branch length ¢#. These probabilities are multiplied over all external nodes

(labeled from 1 to #). Since we generally do not know the residues at the internal
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nodes, we have to sum over all possible assignments of residue g, to internal
nodes k. g, is the equilibrium frequency of a.

The probabilities at each internal node can be calculated based solely on
the probabilities at its direct child nodes. Therefore, the complete probability can
be computed by working up the tree from the external nodes in post order
traversal, as described by Felsenstein (1981a).

To calculate the likelihood for the complete alignment, the likelihood
values for each site are multiplied with each other.

As for ML methods for distance calculation, a limitation of the methods
described above is that they assume the same rate of evolution for all positions.
This limitation has been removed from nucleotide sequence ML methods, using
gamma distributed rates or hidden Markov model approaches (Felsenstein and

Churchill, 1996; Yang, 1993; Yang, 1994; Yang, 1995).

1.4.2.5 Algorithmic Methods Based on Pairwise
Distances
As mentioned above, these algorithmic approaches produce one tree,

taking pairwise distances as input.

1.4.2.5.1 UPGMA

UPGMA (Sokal and Michener, 1958) stands for unweighted pair group
method using arithmetic averages. This clustering algorithm produces

ultrametric, rooted trees based on ultrametric distances (see above). If the input
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distances are not ultrametric (no molecular clock), then UPGMA might
reconstruct an incorrect tree. UPGMA first places each sequence in its own
cluster and then iteratively clusters together the two most similar clusters,
assigning the new cluster the weighted average distances of its members. The
main advantage of this method is its speed [the overall time complexity of

UPGMA is O(N2)].

1.4.2.5.2 Neighbor Joining
As opposed to UPGMA, neighbor joining (NJ) is not misled by the absence

of a molecular clock. It recreates the correct additive tree as long as the input
distances are additive (Studier and Keppler, 1988). NJ is effective even if
additivity is only approximated (Atteson, 1997). Trees produced by NJ are
unrooted. The NJ method was introduced by Saitou and Nei (1987).

The NJ algorithm is as follows (Studier and Keppler, 1988; Swofford et al.,

1996):

Input: NxN matrix of estimated pairwise distances.

Output: One unrooted, fully resolved binary tree.
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1. For each pair i, j of N OTUs, compute (for all j>7):
S;=(N-2)D; —R, - R, (1-21)

where D;; is the estimated distance between 7 and j, and:

R =) Dy (1-22)

2. Pick a pair i, j for which §; is minimal. Create a new node u whose three
branches join nodes i, j, and the rest of the tree (see Figure 1.8). The branch

lengths from u to i and j are:

.= 1-2
“2  2(N-2) 3

b, =D; —b, (1-24)

3. Compute the pairwise distances from u to each other OTU (for all k=i,)):

Dy = %(D,.k +Dy - D) (1-25)

u ij

4. Remove distances to nodes i and j and decrease N by 1.
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5. If more than two nodes remain, go back to step A. Otherwise join the two

remaining nodes with a branch of length D;;.

The overall time complexity of NJ is O(NV3) (Studier and Keppler, 1988).

Step 2. can be explained as follows (Saitou, 1996). Starting with a star-like
tree (no clustering ) of N OTUs we would like to choose the one pair of OTUs that
results in the smallest sum of branch lengths if they were to be joined as
neighbors (two nodes are called neighbors if they are connected through a single
internal node). For the tree in Figure 1.8, OTUs i and j were chosen to be joined
as neighbors. Minimizing equation (1-21) allows us to find the two OTUs joining
of which results in the smallest sum of branch lengths. In this lies the crucial
difference to UPGMA: in UPGMA, the pair for which D; minimal is picked in
each iteration cycle. In NJ, the pair for which — informally speaking — Dj; is
minimized and the distance to all other OTUs is maximized is selected in each
cycle.

NJ is very fast, suitable for large data sets, and reasonably accurate as long
as enough sequence data is available for analysis and the internal branches are
not small compared to the length of the branches leading to the leaves (Hillis et
al. 1994). As mentioned above, the crucial advantage of NJ over UPGMA is that it

does not have the precondition of a molecular clock.
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N2 N3

Figure 1.8. Tree of NV external nodes in which i and j are neighbors.

Adapted from Saitou (1996).

1.4.2.6 Bootstrapping

Bootstrapping is a resampling with replacement. It provides us with
numbers that indicate how much we should trust a particular feature of a
phylogenetic tree (e.g. man and gorilla forming a clade which does not include
the platypus) (Felsenstein, 1985; Mueller and Ayala, 1982). It works as follows
(see Figure 1.9 for a simple example). A resampled multiple alignment is created
by randomly picking columns from a given multiple alignment (bootstrap
resample 1 in Figure 1.9 is created by picking the columns from the original
alignment in the following order: 2, 2, 6, 5, 5, 1). Since the resampling is with
replacement, a column from the original alignment can appear multiple times in
the resampled alignment (and this is the point, since simply changing the order
of the columns would not make a difference for tree inference). In practice, the
original alignment is resampled many times (100 to 1000 times). For each
resampled alignment, a phylogenetic tree is then inferred. The frequency with
which a particular feature appears is taken as a measure of the confidence we can

have in it. Oftentimes, each node of a phylogenetic tree is associated with a
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bootstrap value. These numbers indicate the frequency with which that particular
node appears (the presence of a binary node is determined by the fact that a
binary node separates all OTUs of a tree in precisely two groups: those which are

children of this node and those which are not).

Original sequence alignment:
Sequence 1: ARNDCQ
Sequence 2: VRNDCQ

123456

Bootstrap resample 1:
Sequence 1: RRQCCA
Sequence 2: RRQCCV

226551

Bootstrap resample 2:
Sequence 1: AQCDCQ
Sequence 2: VQCDCQ

165456

Figure 1.9. An example of the bootstrap resampling procedure.
Two bootstrap resamples of the original amino acid multiple alignment are shown. It is indicated

which columns of the original alignment were picked to create the two resamples.
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1.5 Overview

The objective of this work is the development and evaluation of
computational methods for sequence function prediction based on molecular
evolution (phylogenomics). A phylogenomic analysis of a sequence with unknown
function can be divided into three steps: First, the domain composition of the
query is determined, for instance by using the HMMER software (Eddy, 2000)
and the Pfam domain database (Bateman et al., 2000). Second, a gene tree is
inferred for each domain of the query sequence based on the appropriate Pfam
alignments. For this step, the tree building methods discussed in section 1.4.2 are
employed. Third, various inferences about the query are made based on the
topology (and possibly branch lengths) of the gene tree(s). It is this third step
which is the focus of this work.

Visual inspection of gene trees annotated with functional information and
“duplication” or “speciation” on internal nodes can be an easy and intuitive
approach to make phylogenomic inferences. ATV (A Tree Viewer), a computer
program for this purpose was developed during the course of this work and is
presented in chapter 2. While ATV can be used as a general purpose tree display
tool [it can display any tree described in the commonly used “New Hampshire”
format (Felsenstein, 2001)], the primary design goal was to create a means for
manual phylogenomics. ATV allows the display of trees annotated with concepts
related to sequence function (EC-numbers and natural language descriptions).

Internal nodes can be shown as either speciation or gene duplication events.
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Duplications and speciations can be inferred with the SDI algorithm presented in
chapter 3 (in fact, newer versions of ATV include SDI). ATV is also part of RIO,
the automated system for phylogenomics presented in chapter 4 (for example,
ATV can display, and color according to the orthology bootstrap values calculated
by RIO).

As stated in section 1.3.2.1, gene duplication is thought to oftentimes lead
to the generation of new sequence functionality. Hence, knowing which nodes of
a gene tree represent duplication events is important for any functional analysis
based on phylogeny. The only general means by which duplications and
speciations on a gene tree can be inferred is by comparing it to a trusted species
tree. SDI (Speciation Duplication Inference), a simple but fast algorithm for this
purpose, was developed and evaluated during the course of this work. SDI is
presented in chapter 3.

Once duplications and speciations on a gene tree are known, sequences
can be divided into orthologs and paralogs relative to a query sequence whose
function is to be inferred. Ideally, functional annotation is then transferred from
the orthologs to the query. Unfortunately, gene trees can be unreliable.
Therefore, it is advantageous to make phylogenomic inferences over a set of
bootstrap resampled trees (see section 1.4.2.6). The frequency with which a
particular sequence appears orthologous to the query sequence is taken as a
measure of the confidence we can have in that particular orthology. This is
implemented in the RIO (Resampled Inference of Orthologs) procedure
described and evaluated in chapter 4. Besides orthology, RIO implements further

measures based on the topology of gene trees. These measures — “super-
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orthology”, “ultra-paralogy”, and “subtree-neighbors” — are introduced and

justified in chapter 4 as well.
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2.1 Abstract

Summary: A Tree Viewer (ATV) is a Java tool for the display and manipulation
of annotated phylogenetic trees. It can be utilized both as a standalone
application and as an applet in a web browser.

Availability: ATV is available via WWw at
[http://www.genetics.wustl.edu/eddy/atv/] and via FTP at
[ftp://ftp.genetics.wustl.edu/pub/eddy/software/forester.tar.Z]

Contact: zmasek@genetics.wustl.edu
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2.2 Introduction

Many proteins belong to large families consisting of subfamilies with
different biological functions. This complicates efforts to infer the function of new
proteins by computational sequence analysis. Neither of the two main sequence
analysis methods handle large protein families satisfactorily in high-throughput
automated annotation. Pairwise sequence similarity searches, exemplified by
BLAST (Altschul et al., 1990), lead to overly specific annotations. A new sequence
in a protein family is always “most similar” to something, so it is difficult to
recognize when the new sequence is the pioneer member of a novel functional
subfamily. Profile search methods, exemplified by HMMER (Eddy, 2000), lead to
overly general annotations. They recognize that a new sequence fits a general
profile of a family, but do not attempt to subclassify the sequence at all.

Phylogenetic inference is a sensible approach to sub-classifying sequences,
by grouping them hierarchically into evolutionary clades. The use of phylogenetic
inference to improve genome sequence annotation has been termed
“phylogenomics” by Eisen (1998b). A key idea of phylogenomics is to distinguish
sequences that have diverged by speciation (orthologs) from sequences that have
diverged by duplication (paralogs). Although orthology does not equate with
functional conservation, as is sometimes assumed, orthologs often do conserve
more aspects of a protein’s function than paralogs do. We are working on
automating a phylogenomic approach to improve Pfam-based annotations.

During phylogenomic analysis, gene trees are annotated with various data.

Nodes are annotated as either a gene duplication or a speciation, and subtrees are
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annotated according to sequence function (as description and/or EC number). In
addition, information about species (as name and/or taxonomy ID) and sequence
names, branch lengths, and bootstrap values are likely to be present. We needed
a tool for visualizing heavily annotated phylogenetic trees. Although a variety of
excellent tree browsers exist, including DRAWTREE from the PHYLIP package
(Felsenstein, 2001), TREEVIEW (Page, 1996), NIFAS
[http://www.cgr.ki.se/Pfam/nifas.html], NJPLOT (Perriere and Gouy, 1996), and
Phylodendron [http://iubio.bio.indiana.edu/soft/molbio/java/apps/trees/] none
of them exactly suited our annotation needs. Hence, we developed our own

design.
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2.3 Features

ATV is mouse and menu driven. The user can choose which data elements
to display on the tree. All the data fields associated with nodes can be edited. The
tree can be rerooted on any branch. ATV allows visualization of very large trees
(>500 sequences): the user can display any subtree of the tree, zoom in or out, or
collapse any subtree into a single node. The applet hyperlinks to SWISS-PROT
entries for sequences with a SWISS-PROT name. Branches can be colored
according to likelihood values associated with them. The Swing version (see
below) of the application allows printing trees in color. Depending on the user’s
environment, it also allows tree images to be exported as PostScript or PDF files
(which in turn gives the user the opportunity to employ graphics software to
manipulate tree images beyond the capabilities of ATV). An example of ATV
displaying an annotated tree is shown in Figure 2.1.

Trees can be read and saved in the standard “New Hampshire” format
(Felsenstein, 2001), but this format is not suitable for storing annotated trees.
Currently we use a simple extension of the format that we call “New Hampshire
eXtended” format (NHX). In NHX, additional tag/value pairs are used to
associate annotation with nodes (e.g. “:E="is a tag for a EC number, “:S="is a tag
for a species name). In the long term, we envision replacing NHX with a
structured markup language, such as the XML document type definition for the

description of taxonomic relationships described in Gilmour (2000).
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Figure 2.1. ATV displaying a phylogenetic tree of biotin-requiring enzymes.

Red nodes indicate duplications, green numbers represent bootstrap values, orange numbers are
EC numbers, and the functional description of subtrees is in red. The check boxes in the right side
panel are used to choose which information is displayed, whereas the radio buttons are used to

determine the behavior for node clicking.
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2.4 Implementation

ATV is coded in Java, for portability reasons. ATV can be used either as an
applet in a web browser or as a standalone application. ATV should run on any
platform for which a Java 1.1.x runtime environment is available. It has been
tested on Red Hat Linux 6.1, SGI IRIX 6.5, Sun Solaris 5.6, and Microsoft
Windows 95B and Windows NT Workstation 4.0 using various Java runtime
environments from Sun Microsystems and Silicon Graphics. Two versions of ATV
exist. One version uses Swing graphics classes, and is less portable but more
aesthetically pleasing. The other version uses basic AWT (Advanced Windowing
Toolkit) and is more portable. It is straightforward to incorporate ATV and
forester into other Java applications.

ATV is freely available under a BSD open source license. The ATV
distribution includes all source code files, as well as extensive documentation

(including a definition of the NHX format).
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2.6 The New Hampshire X Format (NHX)

(This section is not present in the original publication text.)

NHX is based on the New Hampshire (NH) standard (also called "Newick
tree format") (Felsenstein, 2001). It has the following extensions (compared to
NH used in the PHYLIP package):

e it introduces tags to associate various data fields with a node of a
phylogenetic tree

e both internal and external nodes can be tagged

e number of children per node is at least two (allows polytomous trees)

e the tree is assumed to be rooted if the deepest node is a bifurcation

e the order of the tags does not matter, with the exception that the sequence
name must be first (if assigned)

e the length of all character string based data is unlimited (name, species,

EC number)

e Comments between '[' and ']' are removed (unless the opening bracket is

followed by "&&NHX")

In order to remain compatible with the NEXUS format (Maddison et al.,
1997), all fields except sequence name and branch length (in other words, all
fields eXtending NH) must be wrapped by "[&&NHX" and "]". E.g.
"ADH1:0.11[&&NHX:S=human:E=1.1.1.1]". In contrast to its name, NHX also has

restrictions compared to Felsenstein's definition of the NH format: "Empty"
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nodes are not allowed (e.g. "(,(,),)" is not acceptable). The following characters

IR

cannot be part of names: '("")' '['']'',’ ;" as well as white spaces. The tags are listed

in Table 2.1.
TAG VALUE | MEANING
no tag String sequence name of this node (MUST BE FIRST, IF ASSIGNED)
double | branch length to parent node (MUST BE SECOND, IF ASSIGNED)

:B= integer | bootstrap value at this node (does not apply to external nodes)

:S= String species name of the species/phylum at this node

‘T= integer | NCBI taxonomy ID of the species/phylum at this node

:E= String EC number at this node

:D= 'Y'or 'N' | Y’ if this node represents a duplication event — ‘N’ if this node represents
a speciation event (does not apply to ext nodes)

:0= integer | orthologous to this external node

:SO= integer | "super orthologous" (no duplications on paths) to this external node

:L= float log likelihood value on parent branch

Sw= "Y' or 'N' | placing a subtree on the parent branch of this node makes the tree
significantly worse according to Kishino/Hasegawa test (or similar)

:Co= "Y' or 'N' | Collapse this node when drawing the tree (default is not to collapse)

Table 2.1. Tags used in the NHX format.
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The following is the NHX description of the tree shown in Figure 2.2:

(((ADH2:0.1[&&NHX:S=human:E=1.1.1.1],ADH1:0.11[&&NHX:S=huma
n:E=1.1.1.1]):0.05[&&NHX:S=Primates:E=1.1.1.1:D=Y:B=100],AD
HY:0.1[&&NHX:S=nematode:E=1.1.1.1],ADHX:0.12[&&NHX:S=insect
:E=1.1.1.1]):0.1[&&NHX:S=Metazoa:E=1.1.1.1:D=N], (ADH4:0.09][
&&NHX:S=yeast:E=1.1.1.1],ADH3:0.13[&&NHX:S=yeast:E=1.1.1.1]
,ADH2:0.12[&&NHX:S=yeast:E=1.1.1.1],ADH1:0.11[&&NHX:S=yeast
:E=1.1.1.17):0.1[&&NHX:S=Fungi]) [&&NHX:E=1.1.1.1:D=N];
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Figure 2.2. A sample tree to illustrate the NHX format.
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3.1 Abstract

Motivation: When analyzing protein sequences using sequence similarity
searches, orthologous sequences (that diverged by speciation) are more reliable
predictors of a new protein’s function than paralogous sequences (that diverged
by gene duplication), because duplication enables functional diversification. The
utility of phylogenetic information in high-throughput genome annotation
(“phylogenomics”) is widely recognized, but existing approaches are either
manual or indirect (e.g. not based on phylogenetic trees). Our goal is to automate
phylogenomics using explicit phylogenetic inference. A necessary component is
an algorithm to infer speciation and duplication events in a given gene tree.
Results: We give an algorithm to infer speciation and duplication events on a
gene tree by comparison to a trusted species tree. This algorithm has a worst-case
running time of O(n2) which is inferior to two previous algorithms that are ~O(n)
for a gene tree of n sequences. However, our algorithm is extremely simple, and
its asymptotic worst case behavior is only realized on pathological data sets. We
show empirically, using 1750 gene trees constructed from the Pfam protein family
database, that it appears to be a practical (and often superior) algorithm for
analyzing real gene trees.

Availability: [http://www.genetics.wustl.edu/eddy/forester]

Contact: zmasek@genetics.wustl.edu; eddy@genetics.wustl.edu;
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3.2 Introduction

Automated sequence function prediction becomes a necessity due to the
enormous amount of sequence data currently produced by the various genome
projects. The fact that many proteins belong to large superfamilies that consist of
subfamilies with different biological functions complicates such efforts.

Usually, automated sequence function prediction is done using methods
based on pairwise sequence similarity, such as BLAST (Altschul et al., 1990).
Annotating a new sequence by transferring annotation from its best BLAST hits
tends to classify novel sequences too aggressively. Without careful human
intervention, it is impossible to detect when a new sequence is not as similar to
known homologues as it should be, and it in fact represents the first member of a
novel functional subfamily in a larger superfamily — often an extremely
interesting result.

In contrast, analyses using profile search algorithms such as HMMER
(Eddy, 2000) and protein family databases such as Pfam (Bateman et al., 2000)
and InterPro (Apweiler et al., 2000), classify sequences too conservatively. They
recognize that a new sequence belongs to a certain family, but do not subclassify
the sequence.

Profile algorithms can be used to align the novel sequence to a curated
alignment of the known family members. A human annotator can use this
multiple alignment as input for a phylogenetic tree analysis, and from the
placement of the new sequence in the tree of known sequences can infer a more

specific function. This approach was called “phylogenomics” by Eisen (1998b).
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This procedure is different from schemes such as the COG database (Tatusov et
al., 2001) in that it directly uses phylogenetic trees, whereas COG clusters
sequences based on evolutionary relationships indirectly inferred from sequence
similarities.

It is impossible to automate this process fully, because it is impossible to
precisely define what “protein function” means. However, a principle of
phylogenomics is that orthologous sequences (that diverged by speciation) are
more likely to conserve protein function than paralogous sequences (that
diverged by gene duplication). Orthology and paralogy are precisely defined and
can be inferred from gene and species trees. One simple example of a
phylogenomics approach that is reasonable and automatable could thus be stated
as follows. If a novel sequence has orthologs, functional annotation can be
transferred from them (as in best BLAST analysis); if there are no orthologs, the
sequence is classified as just as a family member (as in Pfam/InterPro analysis)
and flagged as possibly the first representative of a novel subfamily. Other, more
sophisticated analyses could be devised. At the core of such approaches stands
therefore the distinction between orthologs and paralogs, and hence the ability to
discriminate between duplication and speciation events on a gene tree.

Algorithms to distinguish between duplications and speciations have been
employed previously in calculating the dissimilarity between gene trees and
species trees, and in inferring parsimonious species trees from gene trees by
minimizing the number of duplications and gene losses that must be invoked to
reconcile a given gene sequence tree with the inferred species tree (Eulenstein

and Vingron, 1995; Goodman et al., 1979; Guigo et al., 1996; Mirkin et al., 1995;

70



Page and Charleston, 1997; Zhang, 1997). Brute force algorithms to solve this
problem can have unfavorable O(n3) running times. Two known algorithms solve
the problem efficiently with excellent worst-case running times of ~O(n) for a
gene tree of n sequences (Eulenstein, 1998; Page, 1998; Zhang, 1997) but both
algorithms are somewhat complex. We describe here a very simple algorithm that
appears to solve the problem even more efficiently on realistic data sets, though it

has an asymptotic worst-case running time that is less favorable.
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3.3 Algorithm

A gene tree G and the species tree S of the species harboring the genes of G
do not necessarily have to exhibit the same topology (Page and Holmes, 1998).
Gene duplication, gene loss, and horizontal genetic transfer are some of the
forces causing inconsistencies. Gene duplication can be trivially inferred when a
species contains two or more homologues belonging to the same gene family (tree
G, in Figure 3.1). However, due to gene loss or incomplete sampling of genes in
partially sequenced genomes, not all duplications are detectable by simple
redundancy in a gene tree (tree G- in Figure 3.1). Reliable assignment of nodes in
the gene tree as either duplication events or speciation events requires

comparison to the phylogenetic tree of the species (tree S in Figure 3.1).
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Figure. 3.1. Gene trees and species trees.

G; and G- are gene trees, S is a species tree. Internal tree nodes representing gene duplications are
labeled as such, other internal nodes represent speciations. The sequence family in tree G; is
compromised of three functional subfamilies: o, B and y. The two duplications in G; can be
inferred directly from the redundancy of species names. G- is a tree of the same family as G,. In
contrast to G;, some sequences are not present in G-, either due to gene loss or incomplete
sampling. The second duplication in G. can only be inferred by comparing it to the species tree S

and recognizing the anomaly of placing the human gene closer to yeast than to nematodes.

First let us define how we recognize that a node in a gene tree G should be
assigned as a duplication, given species tree S. We use a mapping function M
which was first introduced by Goodman et al. (1979) and used elsewhere (Chen et
al.,, 2000; Eulenstein et al., 1998; Eulenstein and Vingron, 1995; Guigo et al.,

1996; Mirkin et al., 1995; Page, 1994; Page and Charleston, 1997; Zhang, 1997):
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Definition 3.1. Let G be the set of nodes in a rooted binary gene tree
and S the set of nodes in a rooted binary species tree. For any node g € G,
let y(g) be the set of species in which occur the extant genes descendant
from g. For any node s € S, let o(s) be the set of species in the external
nodes descendant from s. For any g € G, let M(g) € S be the smallest
(lowest) node in S satisfying y(g) < c(M(g)). That is, M(g) points to the

ancestral species in S that (we infer) harbored ancestral gene g.

Duplications are then defined using M(g) in Goodman et al. (1979) and

formally in Guigo et al. (1996) and Page and Charleston (1997) as follows:

Definition 3.2. Let g; and g- be the two child nodes of an internal node

g of a rooted binary gene tree G. Node g is a duplication if and only if

M(g) = M(g.) or M(g) = M(g2).

An example is shown in Figure 3.2. This approach makes a parsimony
assumption. It postulates the minimal number of duplications necessary to
reconcile the gene tree with the species tree, and it places those duplications as
close to the external nodes as possible. It minimizes the number of unobserved

genes — due to gene loss or incomplete sampling — that need to be invoked.
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Figure. 3.2. The mapping function M and the definition of a duplication.

M is symbolized by arrows originating at nodes of the gene tree G and pointing to nodes in the
species tree S. Letter A to D represent species names. As an example, the mapping for g; is
computed as follows. According to definition 3.1, y(g;) = {A,C}, hence M(gs) = s. since the
smallest node s € S satisfying y(g) < o(s) is s. for which o(s.) = {A,B,C}. Each external node of G
maps to the external node in S that is associated with the same species name. g. is a duplication

according to definition 3.2, since it and its child g; maps to the same node s..

Given the mapping function M(g), using definition 3.2 to assign
duplications requires only a linear time, O(n) traversal of a gene tree G for n
genes. What about calculating M(g)? To our knowledge, Page was the first to
implement an algorithm for this problem (Page, 1994), but the description given
is a brute force approach (for each node g in G, visit each node s in S, compile the
sets y(g) and o(s), and compare them). This algorithm has a running time of
O(n3), if the number of species in S is O(n). To speed this up, observe that M(g)
cannot be lower than M(g,) or M(g-) in S. Furthermore, observe that M(g) must
in fact be the last common ancestor (LCA) of M(g:) and M(g-). Therefore if we are
careful to traverse G in the right direction, we can assign M(g) recursively
without ever having to explicitly compile or compare the lists y(g) and o(s), and
without having to traverse all of S for each node g. This recursive algorithm goes

as follows:
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Input: Rooted binary gene tree G, rooted binary species tree S
of all species in G.

Output: G with “duplication” or “speciation” assigned to each of
its internal nodes.

Initialization

child nodes

Number nodes of S in preorder traversal (root 1,
always larger than parent node);
to refer to the

For each external node g of G, set M(9)

external node in S with the matching species name;

Recursion
Visit each internal node g of G in postorder traversal (from

external nodes upwards to root):

set a = M(gy1); [g1 is child 1 of the current node g]
set b = M(g,); [g, is child 2 of the current node g]
while ( a !'= b ):
if (a > b ):
set a = parent of node a;
else:
set b = parent of node b;
set M(g) = a;
if ( M(g) == M(g1)) or (M(g) == M(g2) ):
g is a duplication;
else:

g is a speciation.

A sketch of the running time analysis of this algorithm is as follows.

Initializing M(g) for the external nodes of G is O(n) if species names are looked

up in a hash table (Cormen et al., 1990). Initializing the numbering of S is O(n)

(again assuming that the number of nodes in S scales linearly with the number of
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nodes in G; S can be smaller than G but not larger). Thus initialization is O(n)
and will not be the rate determining step. In the recursion, we visit each of the n-1
internal nodes in G individually, and at each node we find the LCA of M(g,) and
M(g-) simply by brute force, by climbing the tree from both points until we meet.
The computational cost of finding LCAs in this manner depends on the topology
of G and S. In the best case, G has no duplications and the topology of G and S are
the same; each LCA determination costs O(1), no node in S will be reached more
than twice in the whole algorithm, and the overall running time is therefore O(n)
(Figure 3.3 A). In a pathological bad case, if M(g) for all internal nodes in G
pointed to the root of the species tree (itself a special case of the unusual situation
in which all parent nodes of all internal nodes are gene duplication events), and
nonetheless no more than one gene in G is found in each species, each LCA
determination would require climbing the entire height of tree S, which for a
balanced binary tree would be log n, giving an overall running time of O(n log n)
(Figure 3.3 B). Finally, in the pathological worst case, not only would each LCA
require climbing all of the height of S, but S could also be a maximally
unbalanced tree (a tree in which each internal node has a least one external child,
also called a “pectinate” tree) with a height of n, giving an overall running time of
O(n2) (Figure 3.3 C). The space complexity of the algorithm is O(n), since only the

two trees and a constant number of auxiliary variables need to be stored.
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Figure. 3.3. The number of duplications and the topology of the species tree
influence the time complexity of our algorithm.

G. to G; are gene trees, S; and S are species trees. M is symbolized by arrows originating at nodes
of the gene tree and pointing to nodes in the species tree. Letter A to D represent species names.
Circled nodes are duplications. Arrows inside the species trees symbolize the movement of

variables a and b (see text).

Algorithms with more efficient asymptotic bounds on running time have

been published. The closest to ours are those of Zhang (1997) and Chen et al.
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(2000). Both observe that LCA calculations can be done in O(1) time, for instance
using the LCA algorithms described by Schieber and Vishkin (1988) or by JaJa
(1991). The trick is that the LCA of any two nodes on a complete binary tree can
be calculated by direct arithmetic. The tree S (which in general is not a complete
binary tree) is therefore preprocessed in such as way that the nodes of S are
associated with nodes in a complete binary tree; this preprocessing takes O(n)
time. A quite different algorithm, developed by Eulenstein (1998), calculates M in
O(no(n,n)) time, where a(n,n) is the very slowly growing inverse of Ackermann’s
function (Cormen et al., 1990). This algorithm visits each node of the species tree
S and in the process calculates M for each internal node of the gene tree, using a
data structure similar to a disjoint-set forest (Cormen et al., 1990).

Both kinds of algorithm, though asymptotically more efficient than ours,
require relatively complex preprocessing. We reasoned that since our algorithm
has so few steps, we were likely to have a better constant factor than both.
Furthermore, our intuition was that the worst case bounds of our algorithm were
pathological and would never be realized on realistic data sets. Eulenstein
comments that his algorithm has a lower constant factor than Zhang’s. We
decided to implement both our algorithm and Eulenstein’s, and compare their

performance on real data.
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3.4 Implementation

Both algorithms were implemented in Java. The Java classes are named
spI for “Speciation vs. Duplication Inference” and are part of our FORESTER
classes for working with phylogenetic trees. FORESTER including SpI is freely
available at http://www.genetics.wustl.edu/eddy/forester/. It should run on
every platform with a Java 1.2 JDK.

A preprocessing step deletes external nodes in S that have no genes in G,
allowing a single trusted species tree to be used for all gene trees.

All timings reported are the average of three runs on a single processor
500 Mhz Pentium III system running Red Hat Linux 6.0 and Sun Microsystems’

Java 1.2 SDK for Linux.
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3.5 Results

We first timed the two implementations on synthetic data sets that would
exercise the worst-case behavior of our algorithm. We synthesized gene trees with
n genes, for a range of values of n, where M(g) for every internal node would map
to the root of the corresponding species tree with n species (e.g. the situations in
Figure 3.3B and 3.3C). Plots of wall clock time versus n are shown in Figure 3.4.
For a balanced species tree, both algorithms have running times that scale nearly
linearly in tree size (our O(n log n) is not appreciably different from linear at first
glance), and our algorithm exhibits a lower constant than our implementation of
the Eulenstein algorithm. For a maximally unbalanced species tree, we confirm
our algorithm’s worst case O(n2) behavior, but because of our lower overhead, spr
is still more efficient for smaller trees. Over about n=550 genes and species, our
implementation of Eulenstein’s algorithm outperforms spi. If only the actual
calculation of M(g) is compared (excluding all preprocessing and initialization
steps), Eulenstein’s algorithm outperforms sp1 for n larger than about 200 taxa
(data not shown).

We then tested both implementations on real data to empirically
determine their average-case behavior. We obtained 2478 multiple sequence
alignments from the “full” alignments (as opposed to the smaller “seed”
alignments) in the protein family database Pfam (release 5.5) (Bateman et al.,
2000).

Gene trees were constructed from these alignments as follows. All

sequences not originating from the curated SWISS-PROT database (Bairoch and
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Apweiler, 2000) and not from species in our species tree (see below) were
removed from the alignments. Alignments with fewer than four or more than
1000 sequences were discarded, leaving 1750 alignments. Columns containing
one or more gap symbols were removed from the alignment if the resulting
alignment after this filtering was at least 100 amino acids in length. Pairwise
distances were calculated based on the Dayhoff PAM matrix (Dayhoff et al., 1978)
using the program PROTDIST from Felsenstein’s PHYLIP package (Felsenstein,
1993). A neighbor-joining tree (Saitou and Nei, 1987) was constructed using the
program NEIGHBOR from the PHYLIP package. Roots were placed by the
midpoint rooting method (Swofford et al., 1996).

A single master species tree was compiled manually, containing 200 of the
most commonly encountered species in Pfam. The topology of this species tree is
based on the taxonomy database at NCBI
[http://www.ncbi.nlm.nih.gov/Taxonomy/tax.html/], the Tree of Life project
(Maddison and Maddison, at
[http://phylogeny.arizona.edu/tree/phylogeny.html]), Barns et al. (1996), and
Aguinaldo et al. (1997). This tree is available at
[http://www.genetics.wustl.edu/eddy/forester/].

The individual running times of the sp1 algorithm and of the Eulenstein
algorithm for each of these 1750 trees are shown in Figure 3.4. These data imply
that the average case behavior of our algorithm on real data sets is approximately

0O(n), and its worst case behavior is not realized.
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Figure. 3.4. Timing benchmarks on real trees to determine average-case
behavior, and synthetic trees that exercise our algorithm’s worst case
behavior.

For the synthetic trees, every internal node of the gene tree maps to the root of the corresponding
species tree and each gene tree has the same size as the corresponding species tree. Each synthetic
data point is the average of three measurements. Curves were fitted using GNUPLOT’s nonlinear
least squares fitting mechanism (Marquardt-Levenberg algorithm). Real trees are from Pfam
alignments and were created as described in the text. In the case of real trees, the species trees
usually have fewer taxa than gene trees (each species may contain more than one paralogous
gene) — hence the smaller times relative to synthetic data tests. Each Pfam data point is the

average of 100 measurements.
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As an example of the results from such an analysis, and how they might be
useful in sequence annotation, the gene tree for the fibrinogen beta and gamma
chain Pfam family (Pfam accession number: PF00147) is presented in Figure 3.5.
The fibrinogen sequence family contains fibrinogen alpha, beta and gamma
chains (sequences with FIBA, FIBB, FIBG prefixes) which together form the
fibrinogen hexamer (Stryer, 1995). Each chain type appears on the tree as a
paralogous subtree. A special case is FIBH_HUMAN (fibrinogen gamma-B
chain) which appears to be the result of alternative splicing of the human gamma
chain gene (Fornace et al., 1984) In addition, the fibrinogen family also contains
various proteins probably involved in adhesion, which share the fibrinogen-like
domain with the fibrinogen sequences (Baker et al., 1990; Jones et al., 1988) such
as tenascins (sequences with TENA prefixes). Interestingly — FIBX_MOUSE (also
named FGL2_MOUSE), a mouse enzyme with prothrombinase activity
(conversion of prothrombin into thrombin) is similar to fibrinogen beta and
gamma chains (Parr et al., 1995). Thrombin is an enzyme responsible for cleaving
fibrinogen into monomers which in turn polymerize into fibrin (Stryer, 1995).
The node connecting FIBX_MOUSE to the rest of the tree is inferred to be a
duplication event, since the placement of FIBX_MOUSE contradicts the species
tree and hence FIBX_MOUSE is inferred to be paralogous to the fibrinogen beta
chain subfamily (FIBB). In contrast, a naive best BLAST analysis of the
FIBX_MOUSE sequence could easily have misannotated it as the mouse

fibrinogen beta chain.
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Figure. 3.5. A gene tree for the fibrinogen beta and gamma chain Pfam
family.

Circled internal nodes represent gene duplication events inferred by spi. The suffix of each
SWISS-PROT sequence name indicates the species (BOVIN, Bos taurus; CHICK, Gallus gallus;
DROME, Drosophila melanogaster; HUMAN, Homo sapiens; PIG, Sus scrofa; RAT, Rattus
norvegicus; XENLA, Xenopus laevis). Bootstrap values were calculated from 100 replicates and
are shown as numbers below the corresponding branch. The tree was rooted by the midpoint
rooting method. The figure was produced with our tree display tool ATV (Zmasek and Eddy,
2001a).
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3.6 Discussion

In this paper we have presented a simple algorithm to infer gene
duplication events on a gene tree by comparing it to a species tree.

Computer science textbooks often warn that comparison of asymptotic
worst-case running times may be misleading. Our algorithm is O(n2), yet
empirically outperforms at least one more complex algorithm with a superior
asymptotic bound close to O(n) (Eulenstein, 1998), at least in our
implementation of the two algorithms. Partly this is because our algorithm has
very few steps, so it has a low constant. Also, the worst case behavior of our
algorithm is only realized in a pathological case: a gene tree where M(g) for every
internal node points to the root of the species tree, and there are no two genes
from the same species (e.g. the number of species in S is O(n)), and the species
tree is maximally unbalanced. Figure 3.4 argues that we do not see such cases in
real data. In real data our algorithm is nearly linear time. The Zhang (1997) O(n)
algorithm has not been analyzed in this work, but we expect that there too, the
improved asymptotic bound will not be worth the cost of the extra complexity nor
the extra computational overhead. We conclude from our results that we will use
spI for future work.

Our goal is to use sDI as part of a system for automating phylogenomics
(Eisen, 1998b). sDI gives us a clean, simple computational engine that can
become part of that larger goal, but there are additional difficulties that must be

faced before we put it to practical use. Most importantly, the algorithm assumes
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at its peril that the gene tree and species tree are both properly rooted and
biologically correct.

Phylogenetic inference algorithms produce unrooted gene trees that will
have to be rooted before duplication inference can be performed. Usually trees
are rooted using either a molecular clock assumption or by defining an outgroup.
A molecular clock assumption is generally dubious, and will be especially dubious
in a sequence family with different paralogous clades with different functions that
are under differing selective pressures. Defining an outgroup in a complicated
family of paralogous sequences depends on recognizing the paralogies in the first
place, so cannot be done independently of duplication inference. Ironically, one
plausible approach to root the gene trees might be to minimize the dissimilarity
between the gene tree and a species tree described in Eulenstein and Vingron
(1995), Goodman et al. (1979), Guigo et al. (1996), Mirkin et al. (1995), and Zhang
(1997), using a duplication inference algorithm.

Phylogenetic inference algorithms also rarely produce completely reliable
gene trees. Even a consensus species tree based on all available evidence (from
paleontological to molecular) will always have ambiguities. Errors in either tree
will produce spurious inferred duplications. This is obviously problematic if
duplications are to be used as indicators of potential functional changes. One way
to portray uncertainty in phylogenetic trees is lack of resolution (i.e.
multifurcations). However, the current algorithms are limited to completely
resolved (i.e. completely binary) gene and species trees. In addition, the concept
of orthology and paralogy is applicable only to completely resolved gene trees.

Instead, we think we can approach this issue using sampling methods, such as
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bootstrap (Felsenstein, 1985; Mueller and Ayala, 1982) or Markov chain Monte
Carlo (Mau et al., 1996), to integrate orthology assignments over tree space. This
would allow us to calculate a probability, or at least a bootstrap confidence value,
for a particular assertion that a known sequence is orthologous to the new
sequence being analyzed, and to rank the inferred orthologs by this confidence.
Sampling methods can also help us with dealing with ambiguities in rooting the
trees. Having a fast algorithm for duplication inference ought to help in any
sampling procedure that explores large numbers of tree topologies. However, we
recognize that the rate limiting step is more likely to be the tree sampling

procedure itself, rather than the duplication inference procedure.
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4.1 Abstract

Background: When analyzing protein sequences using sequence
similarity searches, orthologous sequences (diverged by speciation) are more
reliable predictors of a new protein’s function than paralogous sequences
(diverged by gene duplication), because duplication enables functional
diversification. The utility of phylogenetic information in high-throughput
genome annotation (“phylogenomics”) is widely recognized, but existing
approaches are either manual or indirect (e.g. not based on phylogenetic trees).

Results: Here we present RIO (Resampled Inference of Orthologs), a
procedure for automated phylogenomics using explicit phylogenetic inference. A
major caveat of all phylogenetic analyses is the unreliability of the resulting trees.
Therefore, all RIO analyzes are performed over bootstrap resampled phylogenetic
trees to estimate the reliability of the assignments. We also introduce
supplementary concepts which might be helpful for functional inference. RIO has
been implemented as Perl pipeline of a variety of C and Java computer programs.
It is available at [http://www.genetics.wustl.edu/eddy/forester/]. A web server
allowing to perform RIO analyzes has been set up at [http://www.rio.wustl.edu/].
RIO was tested on the Arabidopsis thaliana and Caenorhabditis elegans
proteomes.

Conclusion: The RIO procedure is particularly useful for the automated
detection of first representatives of novel protein subfamilies. We also describe

how certain types of orthologs might be misleading for functional inference.
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4.2 Introduction

Accurate computational protein function analysis is an important means
to extract value from the growing amount of primary sequence data. Due to the
large amount of data, automated systems seem unavoidable (at least for initial,
prioritizing steps). Such efforts are complicated, for a variety of reasons. The
focus of this work is problems stemming from the fact that many proteins belong
to large families, as suggested by Dayhoff (1976). Such families are oftentimes
composed of subfamilies related to each other by gene duplication events. For
example, it was shown by Ingram (1961) that human «, B, and y chains of
hemoglobins are related to each other by gene duplications. Gene duplication
allows one copy to assume a new biological role through mutation, while the
other copy prevents the loss of the original functionality (Haldane, 1932; Ohno,
1970). Hence, subfamilies oftentimes differ in their biological functionality yet
still exhibit a high degree of sequence similarity amongst each other (for the
human o, B, and y hemoglobin chains the sequence similarity at the amino acid
level is between 41 and 73 percent).

Other complications in functional analysis include: ignoring the multi-
domain organization of proteins; error propagation caused by transfer of
information from previously erroneously annotated sequences; insufficient
masking of low complexity regions; and alternative splicing [for a detailed

discussion see (Galperin and Koonin, 1998)].
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Typically, automated sequence function analysis is accomplished using
methods based on pairwise sequence similarity [such as BLAST (Altschul et al.,
1990) or FASTA (Pearson, 1990)]. Annotating a sequence by transferring
annotation from its most similar sequence(s) tends to classify too aggressively
(overly detailed annotation).

In contrast, analyses using profile search algorithms such as HMMER
(Eddy, 2000) together with a protein family database such as Pfam (Bateman et
al., 2000), classify sequences too conservatively (under annotation). They
recognize that a query sequence belongs to a certain family (or, to be more
precise, indicate which domain(s) the query is likely to contain), but do not
subclassify the sequence. Such methods are effective at dealing the multi-domain
organization of proteins.

Erroneous predictions caused by protein families consisting of subfamilies
with different biological roles can often be avoided by taking into account the
evolutionary history of sequences, as illustrated in Figures 4.1 and 4.2. Profile
search algorithms can be used to align the query sequence to a curated alignment
of the known family members. A human annotator can use this multiple
alignment as input for a phylogenetic tree analysis, and from the placement of the
new sequence in the gene tree of known sequences can infer a more specific
function. This approach was called “phylogenomics” by Eisen (Eisen, 1998b).
This procedure is different from schemes such as the COG database (Tatusov et
al., 2001) in that it directly uses phylogenetic trees, whereas COG clusters
sequences based on evolutionary relationships indirectly inferred from sequence

similarities.
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In particular, the following two scenarios can cause misleading predictions
when using sequence similarity alone for annotation: (i) gene loss and/or
incomplete sequence databases to run the similarity search against (incomplete
sequence databases: not containing at least one representative for each
subfamily) (Figure 4.1), and (ii) unequal rates of evolution (Figure 4.2). When
dealing with a first (or only) representative of a novel subfamily we always have a
situation where the database is incomplete (since by definition it does not contain
other examples of the novel subfamiliy). Thus, similarity based methods alone
cannot tell whether a sequence is a first (or only) representative of a novel
subfamily and therefore does not belong into any currently known subfamily (e.g.
“orphan” G-protein coupled receptors) since every sequence is most similar to
some other sequence. In contrast, when constructing a phylogenetic tree, this fact

is easy to observe (as illustrated in Figure 4.1).

94



RAT O O RAT O
MOUSE O [ _[ MOUSE O
Y Y
HUMAN e
—9® “— wHEAT O i ——— WHEAT O J

HUMAN e 1X

FROG FROG
B 2 z
SHARK SHARK

® : query sequence
QO : orthologous to query
[] : most similar to query

@ : gene duplication

Figure 4.1. Over annotation due to database bias or gene loss under equal
rates of evolution.

Species harboring the sequences are indicated. Two cases are depicted. In A, the query sequence
belongs to the “Y” subfamily which can be correctly inferred by both sequence similarity and
phylogenetic tree based methods (in situation A, the query is most similar to “Y” of rat and
mouse). In short, in situation A, orthology and “most similar” do (partially) overlap. In B, a
situation is depicted where the query is actually a member of a third subfamily “X” but this can
only be inferred by considering the evolutionary history of this sequence family. Sequence
similarity based methods would misleadingly indicate that this query belongs to “Y” since it is
most similar to “Y” in rat, mouse and wheat. In short, in situation B, orthology and “most similar”
do not correspond. Observe that if there would have been already members of “X” in the database
(no gene loss and complete sampling) the query in B could have been correctly determined to

belong to a “X” subfamily (under equal rates of evolution).
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Figure 4.2. Over annotation due to unequal rates of evolution.
Sequence similarity based methods would indicate that the query is a member of the “Z”

subfamily. Phylogenetic tree based methods correctly identify it as a member of subfamily “Y”.

It is infeasible to completely automate functional analysis, because it is
impossible to precisely define what protein “function” means. However, a
principle of phylogenomics is that orthologous sequences (that diverged by
speciation) are more likely to conserve protein function than paralogous
sequences (that diverged by gene duplication). Orthology and paralogy are well
defined and can be inferred from gene and species trees. One simple example of a
phylogenomics approach that is automatable could thus be stated as follows. If a
novel sequence has orthologs, functional annotation can be transferred from
them (as in best BLAST analysis); if there are no orthologs, the sequence is
classified as just a family member (as in Pfam/InterPro analysis) and flagged as
possibly the first representative of a novel subfamily. At the core of such

approaches stands therefore the distinction between orthologs and paralogs, and
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hence the ability to discriminate between duplication and speciation events on a
gene tree. Various efficient algorithms to infer gene duplications on a gene tree by
comparing it to a species have been described [for example: by Eulenstein
(Eulenstein, 1998), and by Zhang (Zhang, 1997)]. We developed a simple
algorithm (named SDI for Speciation Duplication Inference) that appears to solve
this problem even more efficiently on realistic data sets, though it has an
asymptotic worst-case running time that is less favorable (Zmasek and Eddy,
2001b).

In practice, most gene trees tend to be unreliable. Errors in trees will
produce spurious inferred duplications. This is obviously problematic if
duplications are to be used as indicators of potential functional changes.
Therefore, instead of determining the orthologs of a query sequence on just one
gene tree, inference might be performed over bootstrap resampled gene trees
(Felsenstein, 1985; Mueller and Ayala, 1982). This gives a bootstrap estimate of
the reliability of the assignments. Here we describe and test a procedure — RIO
(for Resampled Inference of Orthologs) — which allows to perform such analyses
in an automated fashion. [A similar procedure named “orthostrapper” has been
proposed by Storm and Sonnhammer (personal communication). In contrast to
the RIO approach, “orthostrapper” does not employ a species tree for duplication
inference. It works by pairwise comparison of two species or two groups of
species. Therefore it is suitable for finding orthologs in a given species or group of
species but it cannot be used to detect orthologs from any species.]

The design goals for the RIO system were as follows: (i) Given the input of

a query sequence and a sequence alignment, the output should consist of a list of
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orthologs, ordered according to a confidence value and wuseable in a
bioinformatics pipeline. (ii) The response time should be fast enough, so that RIO
can be used as a web server, and allow the analysis of whole genomes in a
reasonable time.

In addition, we present results from analyzing a plant [A. thaliana
(Arabidopsis-Initiative, 2000)] and a animal [the nematode C. elegans

(C.elegans-Sequencing-Consortium, 1998)] proteome.
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4.3 Algorithm

4.3.1 Definitions

Orthologs are defined as two molecular sequences which diverged by a
speciation event (their last common ancestor on a phylogenetic tree corresponds
to a speciation event). Paralogs are defined as two sequences which diverged by a
duplication event (their last common ancestor corresponds to a duplication)
(Fitch, 1970). In addition to orthology, other concepts derived from gene trees
can be used as means for functional prediction. In the following we introduce and
justify three such concepts (“super-orthologs”, “ultra-paralogs”, and “subtree-
neighbors”):

Even though orthologs are theorized to be good sources to transfer
functional annotation from, their indiscriminate use for this purpose can leave to
incorrect annotations as well. In particular, situations like the one described for
the A. thaliana O-methyltransferase F16P17_38 later in this work pose potential
pitfalls. In the simple example shown in Figure 4.3A, the human query sequence
has two orthologous sequences in wheat. These two wheat sequences are related
to each other by a gene duplication and one (or, less likely, both) of them might
have undergone functional modification after their divergence. Such situations
might be revealed by the only partial (or complete absence of) consensus among
the annotations of the two orthologs (assuming we are given a list of orthologs as

opposed to the gene tree). If one ortholog has to be chosen to transfer annotation
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from, the best guess is to choose the one with the smallest evolutionary distance
to the query. The situation in Figure 4.3B is trickier, since in this case only one
ortholog is present and the condition is not be exposed by only partial consensus
among orthologs. While we do not attempt to solve this problem (a possible
solution is careful manual analysis of the gene tree combined with all other
possible sources of information) we intend to at least give the user a warning that
this situation might be present. For this purpose we introduce the concept of

“super-orthologs”:

Definition 4.1. Given a completely binary and rooted gene tree with
duplication or speciation assigned to each of its internal nodes, two
sequences are defined super-orthologous toward each other if and only if
each internal node on their connecting path represents a speciation

event.

Hence, the query sequences in Figure 4.3 have no super-orthologs. In
contrast, the rat, mouse, and wheat sequences in Figure 4.1A are super-
orthologous towards the human query sequence. By definition, the super-

orthologs of a given sequence are a subset of its orthologs.
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Figure 4.3. The purpose of super-orthologs.
Examples of how inferring the biological role of a query sequence by simply transferring
functional annotation from a orthologous sequence might lead to inaccuracies. These potential

pitfalls lead us to introduce the concept of super-orthologs (Definition 4.1).

Certain sequences underwent multiple duplications relatively recently
resulting in large and species specific sequence families. Examples for such
families are the C. elegans seven-transmembrane proteins acting as odorant and
chemosensory receptors (Mombaerts, 1999; Troemel, 1999). For query sequences
belonging to such sequence families, orthologs (if present) are less effective for
predicting specific information. In these cases, paralogs of the same (sub) family
might be more informative for functional prediction (as long as the duplications
indeed happened “late” in evolutionary times). To formalize this, we introduce

the concept of “ultra-paralogs”:
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Definition 4.2. Given a completely binary and rooted gene tree with
duplication or speciation assigned to each of its internal nodes, two
sequences are defined ultra-paralogous towards each other if and only if
the smallest subtree containing them both contains only internal nodes

representing duplications.

Figure 4.4 illustrates the concept of ultra-paralogs. It follows from
definition 4.2 that two sequences which are ultra-paralogous towards each other
must occur in the same species and are connected by a path consisting solely of
duplication events (being connected by a path of only duplication and being in
the same species are necessary conditions for ultra-paralogy, but not sufficient

ones).
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Figure 4.4. An example of ultra-paralogous sequences.

Oftentimes, researchers construct a gene tree and then rather informally
use “subtrees” to make inferences about sequences (without regard to
duplications and speciations). We introduce this concept into our procedure as

well, formalized as “subtree-neighbors” (illustrated in Figure 4.5):

Definition 4.3. Given a completely binary and rooted gene tree, the k-
subtree-neighbors of a sequence g are defined as all sequences derived
from the k-level parent node of g, except q itself (the level of g itself is 0,

g’s parent is 1, and so forth). The default value of k is 2.

In general, subtree-neighbors are a less strict criterion than orthologs.

They can be useful if there is (partial) consensus among them (for example: if the
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subtree-neighbors of a query are NAD+-dependent isocitrate dehydrogenase and
NADP+-dependent isocitrate dehydrogenase we can conclude that the query is
likely to be a isocitrate dehydrogenase, but it is not possible to determine whether
it is dependent on NAD+ or NADP+). If the subtree-neighbors lack any kind of
consensus a useful inference is not possible [see (Eisen, 1998b) for a more
detailed discussion]. Furthermore, orthologs which are not also subtree-
neighbors might be misleading (for a more detailed discussion of this see below,

and see Figures 4.10 and 4.11 for examples).

® : query sequence

: subtree neighbors

Figure 4.5. An illustration of subtree-neighbors.
The dotted subtrees could either be just one external node or a subtree of arbitrary size and
topology. Species information is of no consequence for the concept of subtree-neighbors. The

subtree-neighbors depicted here are for the default of k=2.
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4.3.2 The RIO procedure

This part portrays the basic RIO procedure. For a simple example with
only four bootstrap resamples, see Figure 4.6.

The method described here utilizes the Pfam protein family database
(Bateman et al., 2000) as a source of high quality curated sequence alignments
and profile HMMs [Hidden Markov Models, see (Eddy, 1996) for a review], as
well as programs from the HMMER package (Eddy, 2000). The procedure can
easily be adapted to work with different sources of alignments and different
alignment programs. For tree reconstruction, the neighbor joining (NJ)
algorithm (Saitou and Nei, 1987) is used, since it is reasonably fast and does not
assume a molecular clock. It recreates the correct additive tree as long as the
input distances are additive (Studier and Keppler, 1988), and is effective even if
additivity is only approximated (Atteson, 1997). This is essential, since we try to
avoid erroneous annotations caused by the absence of a molecular clock (see

Figure 4.2).

Input: A query protein sequence Q with unknown function.
A curated multiple alignment A from the Pfam database for the
protein family to which Q belongs to (as determined by hmmpfam
from the HMMER package).

A profile HMM H for the protein family to which Q belongs to.
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Output: A list (as in Figure 4.7) of proteins orthologous to Q, sorted

according to a bootstrap confidence value (based on orthology,
super-orthology, or subtree-neighborings).
Optional: A gene tree based on the multiple alignment A and the

query Q annotated with orthology bootstrap confidence values for

the query Q.

Procedure:

1.

Query sequence Q is aligned to the existing alignment A (using hmmalign
from the HMMER package and the Pfam profile HMM H).

The alignment is bootstrap resampled x times (usually, x = 100).

Pairwise distances are calculated for each of the x alignments using a model
of amino acid substitution [for example, BLOSUM (Henikoff and Henikoff,
1992) or Dayhoff PAM (Dayhoff et al., 1978)].

A phylogenetic tree is inferred for each of the x sequence alignments [by
Neighbor joining (Saitou and Nei, 1987)]. This results in x gene trees.

For each of the x gene trees: For each node it is inferred whether it
represents a duplication or a speciation event by comparing the gene tree to
a trusted species tree. Note: Neighbor joining produces unrooted trees, yet
speciations and duplications are only meaningful on a rooted tree.
Therefore, a modified version of out SDI algorithm (Zmasek and Eddy,
2001b) is employed. This algorithm infers gene duplications and at the same
time roots the tree by minimizing the sum of duplications. For a more

detailed description, see below.
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For each sequence s in the gene tree (except Q): Count the number of gene
trees where s is orthologous to Q (see Figure 4.6 for an illustration of steps 5.
and 6.).

Additionally, unusually long or short branch lengths on the gene tree (either
a consensus tree with maximum likelihood branch lengths or a tree based on
the original alignment including Q) are used as an indicator of highly
unequal rates of evolution which might warrant special consideration. This

gene tree is also a optional part of the output.
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Figure 4.6. A simple example of the RIO procedure.

Four bootstrap resampled gene trees are shown. Letters represent sequence names/”functions”.
“A” (nematode and wheat) are true orthologs of the human query sequence, whereas “B” (rat) is a
true paralog of the query (i.e. the first tree happens to be the real one). In 3 out of 4 trees
nematode “A” appears orthologous to the query, in 3 out of 4 trees wheat “A” appears orthologous
to the query. Rat “B” never appears to be orthologous. For an example of actual RIO output see

Figure 4.7.
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Even though the RIO algorithm as described above only calculates values
based on orthologies, values for super-orthologies, ultra-paralogies and subtree-
neighbors can be calculated in exactly the same manner (it only requires to

replace “orthologous” in step 6. with “super-orthologous”, “super-paralogous”, or

“subtree-neighboring”).

4.3.3 Precalculation of pairwise distances for

increased time efficiency

The most time consuming step in the procedure described above is the
calculation of the pairwise distances. [The time complexity is O(N2), N being the
number of sequences. On an average Intel processor the wall clock time for 100
bootstrapped datasets is in the range of hours for N in the range of hundreds.]

Since the query sequence is aligned to stable Pfam alignments it is possible
to precalculate the pairwise distances for each alignment and store the results.
Then, when RIO is being used to analyze a query sequence, only the distances of
the query to each sequence in the Pfam alignment have to be calculated. This step
becomes thus O(N) instead of O(N?) (and what was hours before is reduced to
minutes).

The crucial part is that the query sequence has to be bootstrap resampled
in exactly the same way as has been used for precalculating the pairwise distances
of the Pfam alignment. For this purpose, the bootstrap positions are saved to a

file while precalculating the pairwise distances. With this file it is possible to
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bootstrap both the Pfam alignment and the query sequence in precisely the same
manner.

A technical note: The HMMER program hmmalign (used in the RIO
procedure) does not necessarily keep the non-match columns of a input
alignment unchanged. Yet, RIO utilizing precalculated distances is critically
dependent on completely fixed alignments. Therefore, the precalculation of
pairwise distances also includes the creation of specific profile HMMs which
together with the appropriate steps in the RIO procedure itself (“--mapali” option
for hmmalign, removal of non-match columns after the alignment of the query
sequence) result in completely fixed alignments. For a description of this

precalculations in the form of an algorithm see Appendix A.

4.3.4 Rooting of gene trees

The concept of speciation and duplication is only meaningful on rooted
gene trees. Yet neighbor joining produces unrooted trees. For the purpose of this
work we decided based both on empirical grounds as well as on theoretical ones,
that the following parsimony criterion for rooting is probably adequate: Gene
trees are rooted on each branch, resulting in 2N-3 differently rooted trees for a
gene tree of N sequences. For each of these trees the sum of duplications is
determined. From the trees with a minimal number of duplications (if there is
more than one) the tree with the shortest total height is chosen as the “correctly
rooted one”. Empirical studies on gene trees based on 1750 Pfam alignments

show that about 60% of trees rooted in such a way have their root in the same
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position as direct midpoint rooting (Swofford et al., 1996) would place it (results
not shown).

Even though some algorithms used for duplication inference run in
(approximately) linear time (Eulenstein, 1998; Zhang, 1997; Zmasek and Eddy,
2001b), naively performing a full duplication/speciation analysis on each of 2N-3
differently rooted trees results in a overall time complexity of approximately
O(N2). Fortunately, this can be avoided.

For the purpose of the following discussion it is assumed that SDI, our
algorithm for speciation duplication inference, is employed. But it applies to all
algorithms which calculate a mapping function M. M has been defined as follows

(Goodman et al., 1979):

Definition 4.4. Let G be the set of nodes in a rooted binary gene tree
and S the set of nodes in a rooted binary species tree. For any node g € G,
let y(g) be the set of species in which occur the extant genes descendant
from g. For any node s € S, let o(s) be the set of species in the external
nodes descendant from s. For any g € G, let M(g) € S be the smallest

(lowest) node in S satisfying y(g) < c(M(g)).

Duplications are then defined using M(g) as follows:
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Definition 4.5. Let g; and g- be the two child nodes of an internal node

g of a rooted binary gene tree G. Node g is a duplication if and only if

M(g) = M(g.) or M(g) = M(g=).

The main task of most algorithms for duplication inference is the
calculation of M. After M has been calculated for a randomly rooted gene tree G it
is possible to explore different root placements without having to recalculate M
for each node of G. As long as the root is moved one node at the time, M has to be
recalculated only for two nodes: the one node which was child 1 (if the new root is
placed on a branch originating from child 1 of the previous root) or child 2
(otherwise) of the previous root, as well as for the new root itself. Hence, two
postorder traversal steps (child 1 or 2 of the old root, then the new root) in the
SDI algorithm are all that is needed. The new sum of duplications is simply
determined by keeping track of the change in duplication/speciation status in the
two recalculated nodes as well as in the previous root.

Performing this over the whole gene tree (some nodes will be visited twice)
it is possible to explore all possible root placements and calculate the resulting
duplications in practically linear time. See Appendix B for a description of this in

the form of an algorithm.

4.3.5 Master species tree

Duplication inference on a gene tree requires a species tree to compare the

gene tree to. For this purpose, a single completely binary master species tree was
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compiled manually, containing 249 of the most commonly encountered species in
Pfam (spanning Archaea, Bacteria, and Eukaryotes). This tree is based mainly on
information from Maddison’s “Tree of Life” project
[http://phylogeny.arizona.edu/tree/phylogeny.html], NCBI’s taxonomy database
[http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/], the “Deep
Green” project [http://ucjeps.berkeley.edu/bryolab/greenplantpage.html], and
(Aguinaldo et al., 1997; Barns et al., 1996; de Rosa et al., 1999; Morris, 1998).
This master tree groups nematodes and arthropods into a clade of ecdysozoans
(molting animals) as first proposed by Aguinaldo (Aguinaldo et al., 1997), a
classification which is still controversial. The tree is available in NHX format
(Zmasek and Eddy, 20014a) at

[http://www.genetics.wustl.edu/eddy/forester/tree_of_life_bin_1-4.nhx]
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4.4 Implementation

RIO is implemented in the form of the following perl pipeline: Alignment
of the query sequence is accomplished by programs from the HMMER package
(Eddy, 2000). Bootstrapping is performed by a specifically designed C program.
Pairwise distances are calculated by a modified version of TREE-PUZZLE
(Strimmer and von Haeseler, 1996). Neighbor joining trees are calculated by a
modified version of NEIGHBOR from the PHYLIP package (Felsenstein, 2001).
Rooting and duplication inference are accomplished by “SDIunrooted” — a Java
implementation of our SDI algorithm which incorporates various methods for
rooting (see Appendix A). The actual counting of orthologs is performed by
methods of the Java class “RIO”.

These programs, with the exception of HMMER, are part of the
FORESTER package and are available under the GNU GPL license at
[http://www.genetics.wustl.edu/eddy/forester/].

In order to run RIO locally, the following packages and databases need to
be present: HMMER (Eddy, 2000), the Pfam database (Bateman et al., 2000),
the SWISS-PROT and TrEMBL databases (Bairoch and Apweiler, 2000).

RIO is also available as a webserver at [http://www.rio.wustl.edu/]. For
increased time efficiency, the pairwise distance and tree calculations are

parallelized in this version.
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4.5 Results and Discussion

4.5.1 Precalculation of pairwise distances

Pairwise distances to be used in RIO analyses were calculated using the
“full” alignments (as opposed to the smaller “seed” alignments) from Pfam 6.6
(August 2001, 3071 families, (Bateman et al., 2000)). The maximum likelihood
distances were calculated based on the BLOSUM (Henikoff and Henikoff, 1992)
distance matrices using the TREE-PUZZLE (Strimmer and von Haeseler, 1996)
software (non-match columns of the alignments were discarded prior to distance
calculation, as described above). For each family, pairwise distances for 100
bootstrap samples were prepared. Pfam alignments which were either too short
or did not include enough sequences were ignored since analyses based on such
alignments would probably be meaningless. The detailed rules and justifications
for this selection are as follows: Alignments of an average length of less than 30
amino acids were ignored, since they are unlikely to contain enough phylogenetic
signal. For zinc-finger domains this minimal average length was set to 40 amino
acids (as empirical results have shown, the signal in these is particularly poor).
Sequences from species not present in the master species tree (see above) were
removed from the alignments (which results in the rejection of all families
containing solely viral sequences, since our master species tree does not include
viruses). Resulting alignments containing less than six sequences were ignored.

The reason for this is: The addition of sequences to a gene tree can turn
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sequences which were orthologous to each other into paralogs. (For example,
imagine an internal node leading to a mouse and a human sequence. Adding a
yeast sequence to the branch connecting this internal node with the human
sequence, changes to mouse and human sequences into paralogs.) Thus, the
smaller an alignment is, the more likely it will result in a incomplete tree in which
sequences appear orthologous to each other simply due to the absence of certain
sequences. The threshold of six was chosen arbitrarily.

Alignments containing more than 600 sequences (after removal of
sequences from species not present in the master species tree) were dealt with in
following manner: Sequences not originating from SWISS-PROT were discarded.
In addition, sequences from certain mammals were excluded (all primates except
human, mouse, rabbit, hamsters, and goat), since mammals are likely to be over
represented in most Pfam families (primates and rodents in particular). For
extremely large families [immunoglobulin domain (PF00047), protein kinase
domain (PF00069), collagen triple helix repeat (PF01391), and rhodopsin-type 7
transmembrane receptor (PFoo001)], all mammalian sequences except those
from human and rat were excluded.

Following the above rules, pairwise distances (and other the files described
in Appendix B) were precalculated for 2384 alignments from a total of 3071 in
Pfam 6.6 (75 alignments were too short and 612 alignments did contain less than

six sequences from species in our master species tree).
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4.5.2 Phylogenomic analyses of the A. thaliana

and C. elegans and proteomes

We used the RIO procedure to analyze the A. thaliana (Arabidopsis-
Initiative, 2000) and C. elegans (C.elegans-Sequencing-Consortium, 1998)
proteomes in order to get an estimate of the effectiveness of this implementation

of automated phylogenomics.

4.5.2.1 Domain structure analysis

The input for RIO consists of a query protein sequence together with a
Pfam alignment for the/a protein family to which the query belongs to. Before
RIO could be applied we therefore had to determine the matching domains for
each protein in the A. thaliana and C. elegans proteomes. For proteins composed
of different domains, a RIO analysis has to be performed for each domain
individually.

The source for protein sequences were: ATH1.pep.03202001, a flatfile
database of 25,579 A. thaliana amino acid sequences (hypothetical, predicted and
experimentally verified) that have been identified as part of the Arabidopsis
Genome Initiative (AGI) [http://www.arabidopsis.org/info/agi.html], and
wormpep 43, a flatfile database of 19,730 C. elegans amino acid sequences
[http://www.sanger.ac.uk/Projects/C_elegans/wormpep/].

The program hmmpfam (version 2.2g) from the HMMER package was

used to search each protein sequence in ATH1.pep.03202001 and wormpep 43
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against Pfam 6.6. Only domains with a score above the so-called gathering cutoff
were reported (“cut_ga” option) in order to prevent too many erroneous domain
assignments (which would make subsequent RIO analyses harder to interpret).

The sum of domains assigned to the 25,579 A. thaliana protein sequences
was 17,847 (counting multiple copies of the same domain in one protein as one).
12,431 sequences matched one domain (containing possibly multiple copies of
this one domain). 1,982 sequences matched two different domains (containing
possibly multiple copies of both). 453 sequences matched three or more different
domains (containing possibly multiple copies of each). Therefore, a total of
14,866 (58%) sequences from ATH1.pep.03202001 could be assigned to one or
more Pfam families.

Similarly, a sum of 12,314 domains was assigned to the 19,769 C. elegans
protein sequences. 7,698 sequences matched one domain, 1,632 matched two
different domains, and 388 matched three or more different domains. Thus,
9,718 (49%) sequences from wormpep 43 could be assigned to one or more Pfam

families.

4.5.2.2 RIO analysis

After it has been determined which domains the proteins in the A.
thaliana and C. elegans proteomes were likely to contain, RIO was used to
analyze each protein sequence matching one or more Pfam families. Since the
precalculated distances described above were used, all the results are based on

maximum likelihood distances calculated on the BLOSUM matrices and the
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number of bootstrap resamples is 100. The results from these analyses can be
found at [http://www.genetics.wustl.edu/eddy/forester/rio_analyses/]. The
approximate time requirement was between two and three weeks, performed on

eight Pentium III 800Mhz processors.

4.5.2.2.1 How many sequences can be analyzed with RIO?

The first question we tried to answer was how many sequences can be
analyzed with RIO. For an overview, see Table 4.1. From the 17,847 A. thaliana
domain sequences matching a Pfam family, 14,905 (84%) could be analyzed with
RIO using the precalculated distances. 2859 (16%) domain sequences were not
analyzed because the corresponding Pfam alignments were either too short or did
not contain enough sequences (as described above). 83 (0.5%) domain sequences
were not analyzed because the E-value for the match to their profile HMM was
below the threshold of 0.01. This represents a second filtering step for preventing
analyzing false domain assignments (besides only analyzing domain sequences
which score above the gathering cutoff in the domain analysis). (RIO performs a
preprocessing step before aligning the query sequence to a Pfam alignment, in
which the program hmmsearch is used to trim the query sequence by searching it
with the appropriate profile HMM. If the resulting E-value was below 0.01 no
analysis was performed.) Multiple copies of the same domain in certain
sequences result in a sum of individual analyses larger then the number of

analyzed domain sequences. In case of A. thaliana this number was 17,940.
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Correspondingly, from the 12,314 C. elegans domain sequences matching
a Pfam family, 11,287 (92%) could be analyzed with RIO using the precalculated
distances. 901 (7%) domain sequences were not analyzed because the
corresponding Pfam alignments were either too short or did not contain enough
sequences. 53 (0.4%) domain sequences were not analyzed because the E-value
for the match to their profile HMM was below the threshold of 0.01. In addition,
we did not analyze the 73 C. elegans sequences matching the immunoglobulin
family (PF00047). It turned out that the phylogenetic signal in this alignment is
questionable. Furthermore, most of the 73 sequences contain multiple copies of
the immunoglobulin domain (for example, CE08028 contains 48
immunoglobulin domains) and we therefore worried that the results from this
family might skew our overall results. The sum of RIO analyses was 14,740.

In summary, while RIO itself (using precalculated distances prepared as
described above) could analyze most of its query sequences, a high number of

proteins did not match any Pfam family and where therefore precluded from

being analyzed with RIO.
Protein Sum of domains | Domain Sum of
sequences in assigned to sequences individual RIO
proteome proteome analyzed with analyses
RIO
A. thaliana | 25,579 17,847 14,905 17,940
C. elegans | 19,769 12,314 11,287 14,740

Table 4.1. Number of domains which can be analyzed with RIO.
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4.5.2.2.2 RIO analysis of lactate/malate dehydrogenase

family members

Second, in order to test that RIO performs well on an “easy” case, RIO was
used to analyze lactate/malate dehydrogenase family members both in A.
thaliana and C. elegans. L-Lactate and malate dehydrogenases are members of
the same protein family (represented in Pfam as ldh for the NAD-binding domain
and ldh_C for the alpha/beta C-terminal domain), yet they catalyze different
reactions. L-lactate dehydrogenase (EC 1.1.1.27) catalyzes the following reaction:
(S)-lactate + NAD+ = pyruvate + NADH (Dennis and Kaplan, 1960). Malate
dehydrogenase (NAD) (EC 1.1.1.37) catalyzes: (S)-malate + NAD+ = oxaloacetate
+ NADH (Banaszak and Bradshaw, 1975). NADP-dependent malate
dehydrogenase (EC 1.1.1.82) utilizes NADP+ as cofactor instead of NAD+
(Johnson, 1971; Webb, 1992). According to the Pfam domain analysis described
above, the A. thaliana proteome contains ten lactate/malate dehydrogenase
family members, whereas the C. elegans proteome contains three. (In addition,
C. elegans also contains two putative members of a second lactate/malate
dehydrogenase family (Jendrossek et al., 1993), ldh_2, which are not discussed
here.) The RIO output for the A. thaliana protein F12M16_14 analyzed against
the 1dh domain alignment is shown as an example in Figure 4.7. The results are
summarized in Tables 4.2 and 4.3. Complete RIO output files (as well as NHX
(Zmasek and Eddy, 2001a) tree files) are available at
[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/AT_LD
H_MDH/] for A. thaliana and at

[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/CE_LD
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H_MDH/]. In all cases, distinction between malate dehydrogenase (NAD) and
lactate dehydrogenase is unquestionable and in accordance with existing
annotations and BLAST results (data not shown) irrespective which domain (1dh
or ldh_ C) was used for the RIO analysis (which implies that no domain swapping
occurred over long evolutionary times). Furthermore, the same results are
achieved whether only the top 1 sequence (the one with the highest orthology
value, shown in Tables 4.2 and 4.3) or the top 10 sequences are used to transfer
annotation from. The only likely NADP-dependent malate dehydrogenase is the
A. thaliana sequence MCK7_20. For some query sequences, the top orthology
values are low. Yet, all subtree-neighborings above 50% exhibit consensus at
distinguishing between malate and lactate dehydrogenase. In contrast, a finer
distinction (e.g. between mitochondrial and cytoplasmic malate dehydrogenase)
proves more problematic. While there is no case of actual conflict between the
existing annotation and the RIO results, in many cases there is no compelling
evidence in the RIO results to confirm the finer distinctions in the existing
annotations. Obviously, the resolution power of RIO is limited by the given
annotations and by the number (or even presence) of sequences for each

sub(sub)family.
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Sequence Description o[%] n[%] s[%] distance
MDHM_BRANA/27-173 MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37). 89 100 89 0.028000
Q9SPB87SOYBN/31—177 MALATE DEHYDROGENASE. 87 100 42 0.109080
MDH_ECOLI/1-145 MALATE DEHYDROGENASE (EC 1.1.1.37). 53 0 0 0.458890
MDHisALTY/1—145 MALATE DEHYDROGENASE (EC 1.1.1.37). 53 0 0 0.468930
MDHM_CHLRE/60-205 MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37). 32 2 .358410
MDHMiRAT/22—16S MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37). 18 2 .470390
MDHM_PIG/22-168 MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37). 18 2 471480
MDHMiHUMAN/22—16S MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37). 18 2 .491850
MDHM_MOUSE/22-168 MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37). 18 2 491910
015769_TRYBB/6-151 MALATE DEHYDROGENASE. 14 3 492340
Q9VU297DROME/25—171 MALATE DEHYDROGENASE. 6 3 .718600
Q9Y7R8_SCHPO/26-173 MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR. 2 557380
Q9VEB1_ DROME/22-168 CG7998 PROTEIN. 0 .455680
076731_TRYBB/1-154 GLYCOSOMAL MALATE DEHYDROGENASE. 1 726530
Q9U140_LEIMA/1-153 MALATE DEHYDROGENASE. 1 .832380
MDHCiYEAST/lO—176 MALATE DEHYDROGENASE, CYTOPLASMIC (EC 1.1.1.37). 0 .845440
MDHM_YEAST/15-163 MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37). 1 605030
MDHPiYEAST/l—l43 MALATE DEHYDROGENASE, PEROXISOMAL (EC 1.1.1.37). 0 .580820
MDHG_ORYSA/42-188 MALATE DEHYDROGENASE, GLYOXYSOMAL PRECURSOR (EC 1.1.1.37). 12 .338480
MDHG_SOYBN/39-185 MALATE DEHYDROGENASE, GLYOXYSOMAL PRECURSOR (EC 1.1.1.37). 12 350720
MDHGicUCSA/‘IZ—lBS MALATE DEHYDROGENASE, GLYOXYSOMAL PRECURSOR (EC 1.1.1.37). 12 .368460
MDHG_BRANA/39-185 MALATE DEHYDROGENASE, GLYOXYSOMAL PRECURSOR (EC 1.1.1.37). 12 424130

081609_PEA/77-223
081844_ARATH/80-226
Q9SN86_ARATH/80-226
Q9XQF47TOBAC/91—237
081278_SOYBN/92-238
Q9USLA_LEIMA/1-71
P93106_CHLRE/34-180
MDHM_CAEEL/26-172
Q9VUZ8_DROME/20-166
059312_PYRHO/1-23
MDH_SULAC/1-37
MDH_RICPR/2-145
029385_PIG/18-42
055383_SYNY3/11-154

NODULE-ENHANCED MALATE DEHYDROGENASE.
MALATE DEHYDROGENASE PRECURSOR.
MALATE DEHYDROGENASE.

MALATE DEHYDROGENASE PRECURSOR.
MALATE DEHYDROGENASE.

MALATE DEHYDROGENASE (FRAGMENT) .

NAD-DEPENDENT MALATE DEHYDROGENASE (EC 1.1.1.37) (MALIC DEHYDROGENASE) .

PROBABLE MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).
MALATE DEHYDROGENASE.

HYPOTHETICAL 40.1 KDA PROTEIN PH1688.

MALATE DEHYDROGENASE (EC 1.1.1.37) (FRAGMENT).
MALATE DEHYDROGENASE (EC 1.1.1.37).

LACTATE DEHYDROGENASE-A (FRAGMENT) .

2-KETOACID DEHYDROGENASE (MALATE DEHYDROGENASE,

LACTATE DEHYDROGENASE) .

.428890
.428890
.442160
.446470
.468950
.462200
.483690
.907050
.000670
.270070
.369000
.384020
.468610

MDH_BACSU/2-147 MALATE DEHYDROGENASE (EC 1.1.1.37) (VEGETATIVE PROTEIN 69) (VEG69). .482390
MDH_CHLVI/1-142 MALATE DEHYDROGENASE (EC 1.1.1.37). .509210
MDH_ARCFU/1-142 MALATE DEHYDROGENASE (EC 1.1.1.37). .523550
MDH_AERPE/7-145 MALATE DEHYDROGENASE (EC 1.1.1.37). .531830
LDH_THEMA/1-140 L-LACTATE DEHYDROGENASE (EC 1.1.27). .545580
LDH_THEAQ/1-140 L-LACTATE DEHYDROGENASE (EC 1.1.1.27). .603000

067581_AQUAE/11-161

MALATE DEHYDROGENASE.

.617760

LDHA_HORVU/41-183
LDHH_RABIT/2-45

L-LACTATE DEHYDROGENASE A (EC 1.1.1.27) (LDH-A).
L-LACTATE DEHYDROGENASE H CHAIN (EC 1.1.1.27) (LDH-B)

.618550

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.399520
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1.618900

(FRAGMENT) .

Figure 4.7. R1IO output for the A. thaliana protein F12M16_ 14 analyzed
against the Pfam ldh domain alignment (PF00056).

The “Sequence” column identifies sequences in the Pfam alignment either by their SWISS-PROT
“ID” or their TTEMBL “AC” (Bairoch and Apweiler, 2000) with added species information (the
numbers after the dash are the Pfam domain boundaries added by HMMER). “Description” is the
“DE” information either from SWISS-PROT or TrEMBL. The number of observed orthologies
(“0”), subtree-neighborings (“n”), and super-orthologies (“s”) to the query in the 100
bootstrapped trees are indicated (in %) for the sequences in the Pfam alignment. Furthermore the
evolutionary distances (average number of amino acid replacements per residue calculated by
maximum likelihood based on the BLOSUM 62 matrix) between the query and the sequences in
the Pfam alignment are shown. For space reasons some lines of the output are not shown (“...”)
(the
[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/AT_LDH_MDH/]).

complete output is available at
The output is sorted by orthology values. According to this RIO analysis the query sequence is
likely to be orthologous and a subtree-neighbor to the plant sequences MDHM_BRANA and
Q9SPB8_SOYBN. In addition, the query is likely to be super-orthologous to MDHM_BRANA.
The bacterial sequences MDH_ECOLI and MDH_SALTY are also possibly orthologs but no
subtree-neighbors. Hence, F12M16_14 is very likely to be a malate dehydrogenase and possibly

mitochondrial.
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Sequence ID Annotation RIO top 1 hit (highest orthology value)
Domain used for analysis:
Idh (PF00056) Ldh_C (PF02866)
dl4665w LDH (LDH1) L-LDH L-LDH
(0=91%, n=3%) (0=94%, n=12%)
F19P19 13 putative MDH MDH cytoplasmic MDH
(0=2%, n=98%) (0=40%, n=78%)
F12M16_14 mitochondrial NAD- mitochondrial MDH | mitochondrial MDH
dependent MDH (0=89%, n=100%) (0=94%, n=66%)
T30L20.4 putative glyoxysomal MDH | MDH glyoxysomal MDH
precursor (0=55%, n=0%) (0=95%, Nn=37%)
K15M2_16 mitochondrial NAD- MDH mitochondrial MDH
dependent MDH, putative (0=89%, n=100%) (0=84%, n=80%)
F1P2_70 Chloroplast NAD- MDH MDH
dependent MDH (0=87%, n=21%) (0=85%, n=6%)
F17114_150 microbody NAD-dependent | glyoxysomal MDH glyoxysomal MDH
MDH (0=100%, n=100%) | (0=80%, n=97%)
MWF20_2 cytoplasmic MDH MDH MDH
(0=2%, n=100%) (0=38%, n=75%)
MIK19_17 cytoplasmic MDH cytoplasmic MDH MDH
(0=5%, n=99%) (0=31%, n=84%)
MCK7_20 NADP-dependent MDH MDH chloroplast NADP-

(0=60%, n=30%)

MDH (EC 1.1.1.82)
(0=68%, n=82%)

Table 4.2. RIO analysis of A. thaliana lactate/malate dehydrogenase family

members.

Annotations

[http://www.arabidopsis.org/info/agi.html]).
neighboring values for the sequence in the Pfam alignment (Idh or ldh_C) with the highest

orthology value towards the respective query sequence. LDH stands for L-lactate dehydrogenase.

are from

MDH stands for malate dehydrogenase.
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Sequence ID Annotation RIO top 1 hit (highest orthology value)

Domain used for analysis:
Idh (PF00056) Idh_C (PF02866)

F13D12.2 LDH (predicted) L-LDH L-LDH (B chain)
(CE02181) (0=75%, n=61%) | (0=66%, Nn=23%)
F20H11.3 Member of the MDH MDH MDH
(CE09512) protein family (predicted) (0=42%, n=16%) | (0=53%, n=34%)
F46E10.10 Putative MDH, possible cytoplasmic MDH | MDH
(CE20820) ortholog of H. sapiens (0=13%, n=95%) | (0=76%, n=52%)

Hs.75375 gene product
(cytoplasmic MDH)
(predicted)

Table 4.3. RIO analysis of C. elegans lactate/malate dehydrogenase family
members.
Annotations are from  WormPDTM  (Costanzo et al,, 2001) (12/31/2001)

[http://www.proteome.com/databases/index.html]. For more explanations see Table 4.2.
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4.5.2.2.3 Sequences with no orthologs in the current
databases

Third, we determined the distribution of the top orthology bootstrap
values. The sequence with the top orthology bootstrap value is the one which is
most likely to be the true ortholog of the query. If the top orthology bootstrap
value is low, then the query sequence is likely to have no ortholog in the Pfam
alignment. These results are summarized in Table 4.4. For example, for 2252 A.
thaliana query sequences at least one sequence was orthologous in at least 95 out
of 100 resampled trees. In contrast, for 930 A. thaliana query sequences, no
sequence was orthologous in more than five out of 100 bootstrapped trees. For
query sequences with more than one copy of the same domain, each copy had to
meet the conditions individually in order for the whole query sequence being
counted to be below or above the threshold.

It is beyond the scope of this work to attempt to determine threshold
values for “true orthologs” or “absence of orthologs”. Such thresholds are very
likely to be different for different Pfam families since families vary in the
phylogenetic signal their alignment contains. The only conclusion we would like
to make here is that some sequences which are very likely to be true orthologs to
the query, exhibit somewhat low orthology bootstrap values (in the range of 70%

or even lower).
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Top orthology A. thaliana C. elegans
bootstrap values [%] (total: 14,905) (total: 11,287)
>95 2252 922

>90 2982 1224

>80 4185 1858

>70 5198 2393

> 50 7493 3459

<20 2680 4751

<10 1360 3171

<5 930 2452

Table 4.4. Top orthology bootstrap values of RIO analyses.

Query sequences with no orthologs in the current databases are candidates
for wrong functional predictions if such predictions are made solely on sequence
similarity (as illustrated in Figure 4.1). An example for this is the A. thaliana
sequence F28P22_13. (Files related to this analysis are available at
[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/F28P2
2_13/].) This sequence is a zinc-binding dehydrogenase (Pfam: adh_zinc,
PF00107). F28P22_13 has been annotated in ATH1.pep.03202001 “as putative
cinnamyl-alcohol dehydrogenase”, based on sequence similarity (its top 10
BLAST matches are all cinnamyl-alcohol dehydrogenases with E-values in the
range of 1094 if analyzed against all non-redundant GenBank CDS

translations+PDB+SwissProt+PIR+PRF on Jan 2, 2002). Cinnamyl-alcohol

127


http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/F28P22_13/
http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/F28P22_13/

dehydrogenase (EC 1.1.1.195) catalyzes the following reaction: cinnamyl alcohol +
NADP+ = cinnamaldehyde + NADPH (but it can also act on coniferyl alcohol,
sinapyl alcohol and 4-coumaryl alcohol) in the flavonoid, stilbene and lignin
biosynthesis pathways (Webb, 1992; Wyrambik and Grisebach, 1979). According
to the RIO analysis, F28P22_13 has no orthologs (see Figure 4.8 for the
corresponding tree and Figure 4.9 for the RIO output). Furthermore its subtree-
neighbors above 90%, cinnamyl-alcohol dehydrogenases and NADP-dependent
alcohol dehydrogenases (EC 1.1.1.2), exhibit only partial consensus (namely that
of some type of NADP-dependent alcohol dehydrogenase, but not EC 1.1.1.2 or EC
1.1.1.195). Hence, F28P22_13 is likely to be a (possibly novel) type of NADP-
dependent alcohol dehydrogenase (other than EC 1.1.1.2), possibly a novel type of
cinnamyl-alcohol dehydrogenase.

One might expect that each query sequence which appears to have no
orthologs is connected with scenario similar to the one described above for
F28P22_13. Yet, this is clearly not the case, for the following reasons: (i) Gene
duplications might not be followed by functional modification (many Pfam
families are composed of sequences which have all the same function, at least at
the resolution of the current annotation). (ii) Some Pfam families are composed
solely of sequences originating from closely related (or the same) species (such as
PF02362, the B3 DNA binding domain of higher plants). For such families, query
sequences from the same species group are expected to have low orthology
values. In such cases the concept of subtree-neighbors and ultra-paralogs is more
useful than orthologs. (iii) Erroneous RIO results caused by a insufficient

phylogenetic signal (due to short sequences, for example) can lead to low
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orthology values. For this reason, RIO also outputs the average bootstrap value
for the consensus tree to give the user a hint about the amount of phylogenetic

signal in the alignment used.
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CAD3_ARATH
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CAD4_ARATH i
ADH_MYCTU
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Q9U1FO_LEIMA
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ADH1_CAEEL
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ADH3_BACST
iADH1_BACST
ADH2_BAC

ADH2_EMENI

ST
ADHP_ECOLI (propanol preferring 1.1.1.1) _|

EC 1.1.1.195

cinnamyl-alcohol dehydrogenase
reaction: cinnamyl alcohol + NADP™*
= cinnamaldehyde + NADPH

EC1.1.1.2

alcohol dehydrogenase (NADP)
reaction: an alcohol + NADP*

= an aldehyde + NADPH

EC1.1.1.1

alcohol dehydrogenase (NAD)
reaction: an alcohol + NAD™*
= an aldehyde + NADH

Figure 4.8. A phylogenetic tree for zinc-binding dehydrogenases produced

by RIO.

This tree is based on the Pfam alignment adh_zinc (PF00107) and is a subtree of a larger tree. It

has been calculated by the neighbor joining method (Felsenstein, 2001) using maximum

likelihood pairwise distances (Strimmer and von Haeseler, 1996) based on the BLOSUM 62
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matrix (Henikoff and Henikoff, 1992). Gene duplication are indicated by circles (inferred by our
SDI algorithm (Zmasek and Eddy, 2001b)). The tree was rooted by minimizing the sum of
duplications. The tree image was produced by ATV (Zmasek and Eddy, 2001a). Species are
represented by their SWISS-PROT abbreviations (ARATH: Arabidopsis thaliana, TOBAC:
Nicotiana tabacum, MAIZE: Zea mays, MYCTU: Mycobacterium tuberculosis, BACSU: Bacillus
subtilis, LEIMA: Leishmania major, HELPY: Helicobacter pylori, SYNY3: Synechocystis sp.
strain PCC 6803, YEAST: Saccharomyces cerevisiae, KLULA: Kluyveromyces lactis, KLUMA:
Kluyveromyces marxianus, CANAL: Candida albicans, EMENI: Emericella nidulans, SCHPO:
Schizosaccharomyces pombe, CAEEL: Caenorhabditis elegans, BACST: Bacillus
stearothermophilus). The A. thaliana query sequence F28P22_13 is labeled with Q. The
bootstrap orthology values for potential orthologs are indicated in brackets. According to this

tree, F28P22_13 has no orthologs.
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Sequence Description o[%] n[%] s[%] distance

YAHK _ECOLI/14-343 HYPOTHETICAL ZINC-TYPE ALCOHOL DEHYDROGENASE-LIKE PROTEIN IN BETT-PRPR IN 1 98 0 0.923480
TERGENIC REGION.

P71306_ECOLI/14-343 SIMILAR TO CINNAMYL-ALCOHOL DEHYDROGENASE OF P. CRISPUM. 1 98 0 0.923760

XYLB_PSEPU/14-365 ARYL-ALCOHOL DEHYDROGENASE (EC 1.1.1.90) (BENZYL ALCOHOL DEHYDROGENASE) ( 1 1 1 1.768320
BADH) .

Q9S8J10_ARATH/18-348 PUTATIVE CINNAMYL-ALCOHOL DEHYDROGENASE. 0 99 0 0.788690

Q9SJ25_ARATH/18-349 PUTATIVE CINNAMYL-ALCOHOL DEHYDROGENASE. 0 99 0 0.801010

CAD1_ARATH/24-353 CINNAMYL-ALCOHOL DEHYDROGENASE 1 (EC 1.1.1.195) (CAD). 0 99 0 0.813150

CAD2_ARATH/20-349 CINNAMYL-ALCOHOL DEHYDROGENASE ELI3-1 (EC 1.1.1.195) (CAD). 0 99 0 0.888760

065621 _ARATH/25-354 CINNAMYL ALCOHOL DEHYDROGENASE-LIKE PROTEIN, SUBUNIT A (CINNAMYL ALCOHOL 0 99 0 0.905050
DEHYDROGENASE-LIKE PROTEIN, LCADA).

CAD3_ARATH/20-349 CINNAMYL-ALCOHOL DEHYDROGENASE ELI3-2 (EC 1.1.1.195) (CAD). 0 99 0 0.911850

CAD4_TOBAC/21-350 CINNAMYL-ALCOHOL DEHYDROGENASE (EC 1.1.1.195) (CAD). 0 99 0 0.996520

CAD9_TOBAC/21-350 CINNAMYL-ALCOHOL DEHYDROGENASE (EC 1.1.1.195) (CAD) 0 99 0 0.998400

CADH_MAIZE/21-350 CINNAMYL-ALCOHOL DEHYDROGENASE (EC 1.1.1.195) (CAD) (BROWN-MIDRIB 1 PROTE 0 99 0 1.036040
IN) .

CAD4_ARATH/22-351 CINNAMYL-ALCOHOL DEHYDROGENASE 2 (EC 1.1.1.195) (CAD). 0 99 0 1.039940

ADH_MYCTU/15-343 NADP-DEPENDENT ALCOHOL DEHYDROGENASE (EC 1.1.1.2). 0 98 0 0.935120

006007_BACSU/18-346 NADP-DEPENDENT ALCOHOL DEHYDROGENASE. 0 98 0 0.955200

Q9U1F0_LEIMA/16-346 NADP-DEPENDENT ALCOHOL HYDROGENASE. 0 98 0 0.968460

025732_HELPY/16-343 CINNAMYL-ALCOHOL DEHYDROGENASE ELI3-2 (CAD). 0 97 0 1.123840

YM97_YEAST/20-353 HYPOTHETICAL ZINC-TYPE ALCOHOL DEHYDROGENASE-LIKE PROTEIN IN PRE5-FET4 IN 0 76 0 1.388040
TERGENIC REGION.

YCZ5_YEAST/20-354 HYPOTHETICAL ZINC-TYPE ALCOHOL DEHYDROGENASE-LIKE PROTEIN YCR105W (EC 1.1 0 76 0 1.43999%0
L1-) .

P74721_SYNY3/13-333 ZINC-CONTAINING ALCOHOL DEHYDROGENASE FAMILY. 0 60 0 1.354540

YJGB_ECOLI/15-337 HYPOTHETICAL ZINC-TYPE ALCOHOL DEHYDROGENASE-LIKE PROTEIN IN GNTV-LEUX IN 0 60 0 1.368110
TERGENIC REGION (ORF1) .

P95153_MYCTU/25-346 ADHA. 0 9 0 1.931400

1.272530

ADH37BKCST/12*336 ALCOHOL DEHYDROGENASE (EC 1.1.1.1) (ADH-HT). 0 8 0

Figure 4.9. RIO output for the A. thaliana protein F28P22_ 13 analyzed
against the Pfam adh_zinc domain alignment (PF00107).

For an explanation of the output see Figure 4.7. For space reasons some lines of the output are
not shown “.” (the complete output is available at
[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/F28P22_13/]). The
output is sorted by orthology values. According to this RIO analysis the query sequence is likely to
have no orthologs in this alignment. In contrast, the query probably has subtree-neighbors which
are cinnamyl-alcohol dehydrogenases (EC 1.1.1.195), NADP-dependent alcohol dehydrogenases

(EC 1.1.1.2), as well as other zinc-containing alcohol dehydrogenases.

4.5.2.2.4 Inconsistency between orthology bootstrap values
and sequence similarity

Forth, we were interested in the number of sequences in the two
proteomes for which the orthology bootstrap values do not correspond to
sequence similarity (Table 4.5). Such disagreements can be caused by the
situation illustrated in Figure 4.2. To determine these numbers, we used to
following rules. Two thresholds for orthology bootstrap values were chosen: O,

the minimum for being an ortholog (e.g. 90%) and N, the maximum for not being
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an ortholog (e.g.10%). Furthermore, a maximal ratio R for the distance of the
query to non-orthologs to the distance of the query to orthologs was chosen (e.g.
0.5). In order for being counted as exhibiting disagreement between the
orthology bootstrap values and sequence similarity a query sequence had to fulfill
the following two conditions: (i) it must have a least one ortholog with bootstrap
orthology value above or equal to O, and (ii) all sequences in the alignment with
bootstrap orthology values above N, must have distance ratios smaller or equal to
R for at least one sequence with bootstrap orthology lower or equal to N.
Sequences from the following species were ignored in this analysis (since they
were the species of the query sequence or related to it): A. thaliana proteome:
Rosidae (A. thaliana, Pisum sativum, Glycine max, Cucurbita maxima, Cucumis
sativus, Brassica campestris, Brassica napus, Citrus unshiu, Citrus sinensis,
Theobroma cacao, Gossypium hirsutum); C. elegans proteome: nematodes (C.

elegans, Caenorhabditis briggsae, Haemonchus contortus, Ascaris suum).

Thresholds Number of query sequences
(0] N R A. thaliana | C. elegans
90% 10% 0.5 128 19
90% 10% 0.8 328 102
80% 20% 0.5 254 45

Table 4.5. The numbers of sequences for which the orthology bootstrap

values do not correspond to sequence similarity.
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Manual inspection of the RIO output leads to the following, somewhat
unexpected, conclusion. In many cases a discrepancy between orthology
bootstrap values and sequence similarity is caused by orthologs in only
phylogenetically distant (relatively to the query sequence) species. This can lead
to errors if functional annotation is blindly transferred from these orthologs to
the query. As an example of this, the results of analyzing the A. thaliana O-
methyltransferase F16P17_38 are shown in Figures 4.10 and 4.11. (Complete files
are at
[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/F16P17_38/].)
Even though the F16P17_38 sequence is orthologous to the bacterial
hydroxyneurosporene methyltransferases (EC 2.1.1.-) (Armstrong et al., 1989) it
would be dangerous to annotate is as such. A more reasonable annotation for this
query would be to annotate it based on subtree-neighbors and hence call it a
plant O-methyltransferase. An indication of this problem (besides a discrepancy
between orthology bootstrap values and sequence similarity) is the meeting of the
following three conditions: A query sequence has (i) likely orthologs and (ii)
likely subtree-neighbors in other species than the query itself, yet (iii) there is no
significant overlap between the orthologs and the subtree-neighbors.

We were unable to find convincing examples in the C. elegans and A.
thaliana proteomes where wrong sequence similarity based annotations might be
caused by unequal rates of evolution (as illustrated in Figure 4.2). This is not to
say that such cases do not exist in those two proteomes but are likely to be quite
rare. Similarly to the issues described in the previous section, the detection of

such examples is complicated by the fact that for many cases in which a
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discrepancy between orthology bootstrap values and sequence similarity exists,
all sequences in the Pfam alignment appear to have to same function, the Pfam
family is lineage specific, or the annotations are too poor/confusing to make any

kind of inference.
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Q42958 _TOBAC (2.1.1.6)
Q04065_TOBAC (2.1.1.6)
049964 ARATH (?)

COMT_MAIZE (2.1.1.68)
Q42949 TOBAC (2.1.1.6)
F16P17_38_ARATH[Q]

Q9SRD4_ARATH

+7 Q9ZU24_ARATH
Q9SCP7_ARATH

Q96565 HORVU [ 19 ]
Q9T002_ARATH
E Q9T003 ARATH

Q43771_HORVU

Q9ZRC1_WHEAT
ZRP4_MAIZE

024305_PEA

049010_MAIZE

CRTF_RHOSH[ 93]
EQQRFC‘LRHOSH [93]

EC 2.1.1.6

catechol O-methyltransferase

reaction: S-adenosyl-L-methionine + a catechol
= S-adenosyl-L-homocysteine + a guaiacol
and

EC 2.1.1.68

caffeate O-methyltransferase

reaction: S-adenosyl-L-methionine

+ 3,4-dihydroxy-trans-cinnamate

= S-adenosyl-L-homocysteine

+ 3-methoxy-4-hydroxy-trans-cinnamate

EC 2.1.1.-
various (O-) methyltransferases

EC 2.1.1.-

hydroxyneurosporene methyltransferase
reaction:

converts hydroxyneurosporene to

CRTF_RHOCA[ 93] methoxyneurosporene
or demethylspheroidene to spheroidene
HIOM_BOVIN [ 3]
_L EC 2.1.1.4
— HIOM_HUMANT 3] acetylserotonin O-methyltransferase
reaction:

HIOM_CHICK [ 3]

S-adenosyl-L-methionine + N-acetylserotonin
= S-adenosyl-L-homocysteine + melatonin

009179 _RAT[3]

095671_HUMAN [ 3 ]
053764 MYCTU[10]

Figure 4.10. A phylogenetic tree for O-methyltransferases produced by RIO.
This tree is based on the Pfam alignment Methyltransf_2 (PFo0891). It has been constructed in
the same manner as the tree in Figure 4.8. (TOBAC: Nicotiana tabacum, ARATH: Arabidopsis
thaliana, MAIZE: Zea mays, HORVU: Hordeum vulgare, WHEAT: Triticum aestivum, PEA:
Pisum sativum, RHOSH: Rhodobacter sphaeroides, RHOCA: Rhodobacter capsulatus, BOVIN:
Bos taurus, CHICK: Gallus gallus, RAT: Rattus norvegicus, MYCTU: Mycobacterium
tuberculosis.). The A. thaliana query sequence F16P17_38 is labeled with Q. The bootstrap
orthology values for potential orthologs are indicated in brackets (the brightness of the green
color is proportional to this value). The apparent trifurcation at the root is caused by a branch
length of 0.0 (the bacterial hydroxyneurosporene methyltransferases subtree and the plant O-
methyltransferases subtree are connected by a speciation event). Inferred gene duplication are

indicated by circles. According to this tree, F16P17_38 has orthologs only in bacteria.
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Sequence Description o[%] n[%] s[%] distance
Q9RFC4_RHOSH/112-349 CRTF. 93 0 0 1.666990
CRTFﬁRHOCA/l37—367 HYDROXYNEUROSPORENE METHYLTRANSFERASE (EC 2.1.1.-) (O-METHYLASE). 93 0 0 1.707230
CRTF_RHOSH/109-346 HYDROXYNEUROSPORENE METHYLTRANSFERASE (EC 2.1.1.-) (O-METHYLASE). 93 0 0 1.713780
Q965657HORVU/110—352 CAFFEIC ACID O-METHYLTRANSFERASE (EC 2.1.1.6) (CATECHOL O- METHYLTRANSFER 19 43 0 0.913640
ASE) (0-METHYLTRANSFERASE) .
053764_MYCTU/71-316 PUTATIVE METHYLTRANSFERASE. 10 0 0 1.602520
095671 HUMAN/349-595 ASMTL PROTEIN. 3 0 0 1.580280
009179 _RAT/80-322 HYDROXYINDOLE-O-METHYLTRANSFERASE (EC 2.1.1.4) (ACETYLSEROTONIN O- METHYL 3 0 0 1.674460
TRANSFERASE) (HYDROXYINDOLE O-METHYLTRANSFERASE) .
HIOM_HUMAN/79-322 HYDROXYINDOLE O-METHYLTRANSFERASE (EC 2.1.1.4) (HIOMT) (ACETYLSEROTONIN O 3 0 0 1.749550
-METHYLTRANSFERASE) (ASMT) .
HIOMﬁEOVIN/79—322 HYDROXYINDOLE O-METHYLTRANSFERASE (EC 2.1.1.4) (HIOMT) (ACETYLSEROTONIN O 3 0 0 1.764290
-METHYLTRANSFERASE) (ASMT) .
HIOMﬁCHICK/81—323 HYDROXYINDOLE O-METHYLTRANSFERASE (EC 2.1.1.4) (HIOMT) (ACETYLSEROTONIN O 3 0 0 1.787620
-METHYLTRANSFERASE) (ASMT) .
Q9SRD4_ARATH/100-342 PUTATIVE CATECHOL O-METHYLTRANSFERASE. 0 100 0 0.526350
049964 ARATH/97-338 O-METHYLTRANSFERASE 1. 0o 72 0 0.632160
042958 TOBAC/99-340 CATECHOL O-METHYLTRANSFERASE (EC 2.1.1.6). 0o 72 0 0.639820
Q040657TOEAC/99—340 CATECHOL O-METHYLTRANSFERASE. 0 72 0 0.649210
042949 TOBAC/100-342 CATECHOL O-METHYLTRANSFERASE (EC 2.1.1.6). 0o 72 0 0.663620
COMT_MAIZE/100-341 CAFFEIC ACID 3-O-METHYLTRANSFERASE (EC 2.1.1.68) (S-ADENOSYSL-L- METHIONI 0o 72 0 0.721520
NE:CAFFEIC ACID 3-O-METHYLTRANSFERASE) (COMT) .
09SCP7_ARATH/93-336 CAFFEIC ACID O-METHYLTRANSFERASE-LIKE PROTEIN. 0 37 0 0.988010
Q97U24_ARATH/96-339 F5F19.5 PROTEIN. 0 36 0 0.701190
Q9T003_ARATH/103-358 O-METHYLTRANSFERASE-LIKE PROTEIN. 0 2 0 0.974450
Q9T002_ARATH/46-301 O-METHYLTRANSFERASE-LIKE PROTEIN. 0 2 0 1.100820
ZRF47MAIZE/94—341 O-METHYLTRANSFERASE ZRP4 (EC 2.1.1.-) (OMT). 0 2 0 1.116310
024305_PEA/93-337 6A-HYDROXYMAACKIAIN METHYLTRANSFERASE. 0 2 0 1.182120
Q437717HORVU/117—367 CATECHOL O-METHYLTRANSFERASE (EC 2.1.1.6). 0 2 0 1.264630
Q9ZRC1_WHEAT/97-359 O-METHYLTRANSFERASE . 0 2 0 1.270800
049010_MAIZE/90-340 HERBICIDE SAFENER BINDING PROTEIN. 0 2 0 1.530230

Figure 4.11. RIO output for the A. thaliana protein F16P17_38 analyzed
against the Pfam Methyltransf 2 domain alignment (PFo0891).

For an explanation of the output see Figure 4.7. The output is sorted by orthology values.
According to this RIO analysis the orthologs of F16P17_38 are bacterial hydroxyneurosporene
methyltransferases. These contrast with the subtree-neighbors of F16P17_38 which are all plant

O-methyltransferases.
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4.6 Conclusions

In this work we present RIO, a procedure for automated phylogenomics, in
particular — automated orthology detection. A major caveat of all phylogenetic
analyses is the unreliability of the resulting trees. Therefore, inference of gene
duplications is performed over bootstrap resampled phylogenetic trees to
estimate the reliability of the orthology assignments. In addition, we introduce
supplementary concepts which may be useful for functional prediction: super-
orthologs, ultra-paralogs and subtree-neighbors. Initial testing and evaluation of
RIO was performed by analyzing the A. thaliana and C. elegans proteomes.

It appears that the RIO procedure is particularly useful for the detection of
first representatives of novel protein subfamilies. Sequence similarity based
methods can be misleading in these cases since every query is always “most
similar to something”, whereas RIO can detect the absence of orthologs.

Super-orthology is a very stringent criterion. If a query sequence is likely
to have super-orthologs, they represent an excellent source to transfer functional
annotation from. In contrast, the absence of super-orthologs does not imply that
a function for a query sequence cannot be inferred (in the two proteomes
analyzed in this work, most sequences appear to have no super-orthologs in Pfam
6.6).

Ultra-paralogs are sequences in the same species as the query and are
likely to be the result of recent duplications and therefore might not have yet

undergone much functional divergence. Operationally, splice variants can also be
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thought of as ultra-paralogs (at least as long as protein sequences are
considered).

Subtree-neighbors have two uses: (i) The commonly used “subtree
concept”: If the subtree-neighbors of the query sequence exhibit (partial)
consensus in their functional annotations, the elements in which they agree
might be used the infer a (partial) function for the query. This is useful for query
sequences which are appear to have no orthologs in the current databases. (ii)
For query sequences which do have orthologs, absence of overlap between the
sequences considered orthologous and those which appear to be subtree-
neighbors should be treated as a red flag. It might indicate that the orthologs are
in phylogenetically distant species relative to the query. Transferring annotation
from such orthologs is risky. In this case, subtree-neighbors are a more reliable
source to transfer annotation from.

RIO outputs warnings if the distance of the query sequence to other
sequences is unusually short or long. The usefulness of this was not investigated
in this work.

A RIO procedure based on Pfam alignments analyzes each protein domain
individually since Pfam is protein family database based on individual domains
(Bateman et al.,, 2000). While this seems to be a disadvantage it also has a
powerful advantage: Due to domain shuffling many proteins are mosaic proteins,
proteins composed of domains with different evolutionary histories (Doolittle,
1985; Patthy, 1985). For such proteins it makes much sense to analyze each
domain individually Furthermore, mosaic proteins from sufficiently distant

species might be impossible to be aligned over more than one domain at the time,
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since they are unlikely to exhibit the same domain organization. The same is true
for multiple copies of the same domain in protein: Each of them are analyzed
individually (such proteins oftentimes differ in their number of domain copies
and could therefore not be aligned from end to end for the whole family).

RIO’s most serious drawback is its reliance on a reasonably strong
phylogenetic signal in the alignment. Additionally, if the alignment does not
contain enough sequences, the result might be meaningless. RIO is obviously also
dependent on the quality of the species tree used (in particular for C. elegans:
currently, it is not clear whether a clade including both nematodes and
arthropods exists, the so called ecdysozoa; or whether a more classic view of
animal evolution holds true).

In order to make RIO more time efficient it can use precalculated pairwise
distances. This allows analyzing a complete proteome in a few weeks utilizing
about ten average personal computers. One query sequence can be analyzed
against an alignment of 221 sequences in about two minutes on one average PC
(Pentium III, 800Mhz). In order for RIO to be used on-line we produced a
parallelized version.

In general, the concept of “consensus” is very important in this work (for
example consensus between subtree-neighbors, or between subtree-neighbors
and orthologs). A useful future extension would be to incorporate automated
consensus detection into RIO. This would include annotation of internal nodes of
a gene tree with a “biological function”. Automated consensus detection is trivial
for a highly formalized notation system, such as EC numbers (the consensus of

EC 1.1.1.3 and EC 1.1.1.23 is EC 1.1.1, a oxidoreductase acting on the CH-OH
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group of donors with NAD+ or NADP+ as acceptor (Webb, 1992)). Obviously, it is
much more difficult to analyze natural language annotations in the same manner,
yet this could be accomplished by utilizing the set of structured vocabularies of
the Gene Ontology (GO) project (Gene-Ontology-Consortium, 2001)

[http://www.geneontology.org/].
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4.8 Appendix A: Precalculation of

pairwise distances

Input: Pfam full alignment A.
Output: “aln” file containing modified full alignment
“hmm” file containing a profile HMM
“nbd” file containing pairwise distances
“bsp” file bootstrap positions file
“pwd” file containing pairwise distances for bootstrap resampled

alignment

1. If necessary: remove certain sequences (species not in master species tree)
from alignment A.

2. If A does not contain enough sequences (<6), abort.

3. Run hmmbuild on A, resulting in alignment A’ (using the same options as
were used to build the original HMM for A).

4. Keep A’as “aln” file.

5. Run hmmbuild with “--hand” option on A’, resulting in HMM H’ (using the
same options as were used to build the original HMM for A).

6. Calibrate H with hmmcalibrate and keep as “hmm” file.

7. remove non-match columns from A’, resulting in alignment A”.

143



10.

Calculate pairwise distances for A”, resulting in the “nbd” file (non-
bootstrapped distances).
Bootstrap resample A”, resulting in the “bsp” file (bootstrap positions file).

Calculate pairwise distances for bootstrapped A”, resulting in the “pwd” file.
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4.9 Appendix B: Speciation Duplication

Inference combined with rooting

Input : binary gene tree G, rooted binary species tree S.
Output: G with "duplication" or "speciation" assigned to each internal node

and rooted in such a way that the sum of duplications is minimized.

SDIunrooted( G, S)
root gene tree G at the midpoint of a branch of choice;
set B = getBranchesInOrder( G );
SDIse( G, S ) [see chapter 3 or (Zmasek and Eddy, 2001b)];
for each branch b in B:
set n; = child 1 of root of G;
set n. = child 2 of root of G;
root G at the midpoint of branch b;
updateM( n;, n- );
if ( sum of duplications in G < dmin ):
set dmin = sum of duplications in G;
set Gdmin = G;

return Gdmin;
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updateM( ny, n2 )
set r = root of G;
if (child 1 of r ==n, || child 2 of r ==n, ):
calculateMforNode( n; );
else:
calculateMforNode( n. );

calculateMforNode( r );

calculateMforNode( n)
if ( 'n.isExternal() ):
seta=M(child1ofn);
setb = M( child 2 of n);
while (a!=b):
if(a>b):
set a = parent of a;
else:
set b = parent of b;
set M(n) = a;
if (M(n)==M(child1ofn) || M(n) == M( child 2 of n ):
n is duplication;
else:

n is speciation;
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getBranchesInOrder( G)

set n = root of G;

seti=o0;

while !( n == root && indicator of n ==2):

if ( n != external && indicator of n !=2):

else:

return B;

if (indicator of n == 0):
set indicator of n = 1;
set n = child 1 of n;
else:
set indicator of n = 2;
set n = child 2 of n;
if ( parent of n !=root ):

set B[ i ] = branch connecting n and parent of n;

else:
set B[ i ] = branch connecting child 1 of root and child
2 of root;

seti=1+1;

if ( parent of n !=root && n != external ):
set B[ i ] = branch connecting n and parent of n;
seti=1+1;

set n = parent of n;
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5 Conclusions and future

directions

In this work, RIO, a procedure for automated phylogenomics was
developed and evaluated.

As pointed out in chapter 4, RIO is particularly useful for the automated
detection of first representatives of previously unknown protein subfamilies.
Additionally, RIO can be used to prioritize further (experimental) studies. RIO
allows to automatically scan for proteins which show “unexpected” properties
(such as wunusual branch lengths, inconsistency between similarity and
orthology, inconsistency between subtree-neighbors and orthologs). On the
other hand, RIO can also be employed to scan for the opposite, namely
sequences which do not show any unusual properties and for which a function
can be inferred with confidence.

The resolution which is achievable with RIO is dependent primarily on
three things: (i) the amount of phylogenetic signal in the alignment used for tree
construction, (ii) the resolution with which the sequences in this alignment are
annotated, and (iii) the number of sequences in the alignment.

Related to the question of resolution is the issue of the “transitive
annotation catastrophe”. This is caused by automated annotation systems which
are prone to propagate erroneous annotations from one sequence to another,

leading to an exponentially growing number of misannotated sequences. As for
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similarity based methods, RIO is expected to be less prone to already existing
incorrect predictions if instead of “top 1” hits, only information based on
consensus is used. Furthermore, one might expect that a system like RIO is less
likely to spread wrong annotations since its results can easily be interpreted to
determine whether added annotation (besides family membership) is reasonable
or not (absence of orthologs and/or absence of consensus). This is of course only
true as long as the number of misannotated sequences is small compared to the
number of correctly annotated ones.

Besides incorporating automated consensus detection into RIO, as
discussed in section 4.6, the following future developments might prove to be of
some value.

Biochemical- and signaling-pathway analysis: Whereas functional
prediction for individual sequences is an important and difficult task, detailed
knowledge about sequence function is only one step towards the even more
important goal of biochemical- and signaling-pathway analysis and
reconstruction (and simulation). This, of course, is a precondition for rational
pathway engineering and whole organism analysis and simulation. Combining
RIO with a protein function database (containing information about the
substrates and products for each known enzyme, targets and effectors for
signaling proteins) could eventually lead to the automated reconstruction of
pathways.

Association of sequence patterns with biological functions: Overlaying
biological properties as well as amino acid sequences over a gene tree could be

used to determine the sequence pattern(s) associated with a given biological

149



property associated with a subtree/subfamily. While this is obviously not tied to
the RIO procedure as such, it is another example of how phylogenetic analysis
could be used for sequence analysis.

Curated subtree definitions: This is a possible addition to a protein or
domain alignment database (such as Pfam), allowing for subtree/subfamily-level
classification. In this approach, subtrees are defined by two so-called "outposts".
The "outposts" of a given subtree are sequences whose last common ancestor is
thought to be the ancestral sequence of the subtree. For example, the BAX
subfamily in Figure 1.6 could be defined by the following two "outposts":
"BAXA_MOUSE" and "BAXD_HUMAN". Combining this approach with
phylogenomics makes it straight forward to determine whether a query sequence
is a first representative of a novel subfamily or whether it belongs to a defined

subtree (as well as to determine to which subtree it belongs to).
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