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Abstract of Dissertation 

In this work, computational methods for the purpose of sequence function 

prediction based on molecular evolution were developed and tested. 

When analyzing molecular sequences using sequence similarity searches, 

orthologous sequences (diverged by speciation) are more reliable predictors of 

biological function than paralogous sequences (diverged by gene duplication), 

because duplication enables functional diversification. The utility of phylogenetic 

information in high-throughput genome annotation (“phylogenomics”) is widely 

recognized, but existing approaches are either manual or indirect (not based on 

phylogenetic trees). Therefore, a procedure for automated phylogenomics using 

explicit phylogenetic inference was produced. 

At the center of a phylogenomic approach stands the inference of gene 

duplications by comparing the gene tree containing the sequence to be analyzed 

to a trusted species tree. An algorithm for this purpose was developed. This 

algorithm exhibits an inferior worst case behavior compared to previously 

published ones but appears to be superior in most practical cases, partially due to 

its simplicity. 

A major caveat of all phylogenetic analyses is the unreliability of the 

resulting trees. Therefore, inference of gene duplications is performed over 

bootstrap-resampled phylogenetic trees to estimate the reliability of the 

orthology assignments. Additionally, supplementary measures extending the 

concepts of orthology and paralogy were introduced and assessed for their 

effectiveness in functional prediction. 
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The phylogenomic approach developed in this work was tested on the 

proteomes of the flowering plant Arabidopsis thaliana and the nematode 

Caenorhabditis elegans. It appears that this approach is particularly useful for 

the automated detection of first representatives of novel protein subfamilies. 
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“Nothing in biology makes sense except in the light of evolution.” 

 

Theodosius Dobzhansky (1900-1975) 
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1  Introduction 
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1.1 Scope of Thesis 

The scope of this thesis is the development and evaluation of 

computational methods for analyzing the biological roles of protein sequences 

using concepts from the field of molecular evolution. 

The following three main components were developed in the course of this 

work: 

ATV: A program for the display of annotated phylogenetic trees as a tool 

for studying large gene trees. The resulting publication makes up chapter 2 of this 

dissertation. 

SDI: An algorithm to determine which nodes on a phylogenetic tree 

represent gene duplications. The resulting publication makes up chapter 3. 

RIO: Resampled Inference of Orthologs: This is a package of programs for 

the automated analysis of protein sequences by phylogenetic methods. The 

resulting publication makes up chapter 4. 

At the center of the methods described in this thesis stands the inference 

of gene duplications by comparing the gene tree containing the sequence to be 

analyzed to a trusted species tree. An algorithm for this purpose (“SDI”) has been 

developed and analyzed. 

A major caveat of all phylogenetic analyses is the unreliability of the 

resulting trees. Therefore, inference of gene duplications is performed over 

bootstrap resampled phylogenetic trees to estimate the reliability of the orthology 

assignments. “RIO” is a package which bundles programs for these purposes. 
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1.2 Sequence Function Analysis 

In 1977, the genome of the bacteriophage �X174 was determined by the 

emerging technology of DNA sequencing (Sanger et al., 1977). After two decades 

of technology development, the genome of Haemophilus influenza was reported 

in 1995 (Fleischmann et al., 1995) as the first complete bacterial genome. Now, 

the genomes of three metazoans, human (Lander et al., 2001; Venter et al., 2001), 

the nematode Caenorhabditis elegans (C.elegans-Sequencing-Consortium, 

1998), and the fruit fly Drosophila melanogaster (Adams et al., 2000), the 

flowering plant Arabidopsis thaliana (Arabidopsis-Initiative, 2000), the yeast 

Saccharomyces cerevisiae (Goffeau et al., 1996), as well as those of many 

Bacteria and Archaea are known (Doolittle, 1998). For a constantly updated list 

of published microbial genomes and microbial genomes in progress see 

[http://www.tigr.org/tdb/mdb/mdbcomplete.html]. 

This information will lead toward a basic understanding of the 

fundamental problems in life sciences, as well as stimulation of practical 

applications in medical, pharmaceutical, and agricultural sciences. However, the 

sequence data obtained by genome sequencing projects do not by themselves 

provide direct answers to such fundamental problems or practical applications. 

The sequencing of a genome is an easier task than the understanding of 

functional implications of when, where, and most importantly, how genes and 

molecules function and interact in organisms. 
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1.2.1 Most functional predictions for 

uncharacterized genes are based on sequence 

similarity 

Functional predictions based on sequence similarity are widely used. The 

most simple method is based on the highest scoring hit (the “top one hit”). The 

uncharacterized sequence is assigned the function of the sequence that is 

identified as having the highest degree of similarity by a similarity search 

program like BLAST (Altschul et al., 1990) For example, the Helicobacter pylori 

genomic sequence has been analyzed in such a way (Tomb et al., 1997). Another 

method is based on examining a certain number of top hits. Depending on the 

degree of consensus of the genes identified as having the highest degree of 

similarity, the query sequence is assigned a specific function, a general activity, or 

an unknown function. The Escherichia coli genomic sequence has been analyzed 

this way (Blattner et al., 1997). The predicted coding regions with putative 

identifications are typically assigned biological roles with the classification 

system adapted from Riley (1993). 

1.2.2 Functional predictions based on 

sequence similarity fail in certain cases 

Sequences can be similar due to convergence or homology. Homologs are 

sequences which share a common ancestor, whereas convergent sequences lack a 
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common evolutionary history. Homologs can be divided into orthologs and 

paralogs. Orthologs are homologous sequences that diverged from each other by 

speciation. Paralogs are homologous sequences that diverged from each other by 

gene duplication (for more detailed information see section 1.3.2.1). It follows 

that there are at least three difficulties with functional predictions based on 

sequence similarity. First, sequence similarities can be due to convergence and 

therefore not necessarily indicate functional similarity. This problem can be 

partially overcome by just considering similarities that are too high to be due to 

convergence (although a threshold for such an inference is not well established). 

Second, sequences can have a high degree of sequence similarity without fulfilling 

the same biological role; this is particularly likely for paralogous sequences. An 

example of this is L-lactate dehydrogenase (EC 1.1.1.27) and malate 

dehydrogenase (EC 1.1.1.37). These two enzymes are thought to have evolved 

from a common ancestor (Golding and Dean, 1998). They share a high degree of 

sequence similarity (BLASTP E-value is in the range of 5.0�10-7) but have 

different substrate specificities and therefore different biological roles. (See 

Figures 4.1 and 4.2 later in this work for illustrations of how paralogy combined 

with gene loss or database bias and/or unequal rates of evolution can lead to 

erroneous predictions if only sequence similarity is considered.) Third, 

homologous sequences can diverge so much that sequence similarities are 

difficult to detect. 

In addition, we need to consider that no clear definition for sequence 

“function” exists. Depending on the sequences studied and the methods used, 

predictions with different levels of resolution will result. Functional prediction 
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can be understood as a rough classification of proteins according to the “class” of 

reaction catalyzed, such as hydrogenases, kinases, etc. A more detailed 

classification also includes information about substrates, products, and cofactors. 

An example of such a classification is the EC-number system. In the EC (Enzyme 

Commission) nomenclature, enzymes are principally classified and named 

according to the reaction they catalyze. The enzymes are divided into hierarchical 

groups where group membership is encoded into a code of four numbers. The 

first number shows to which of the six main divisions the enzyme belongs (EC 1. - 

oxidoreductases, EC 2. - transferases, EC 3. - hydrolases, EC 4. - lyases, EC 5. - 

isomerases, EC 6. - ligases). The second number indicates the subclass (e.g. EC 

1.1.: oxidoreductases acting on the CH-OH group of donors). The third number 

gives the sub-subclass (e.g. EC 1.1.1.: oxidoreductases acting on the CH-OH group 

of donors with NAD+ or NADP+ as acceptor). The fourth number is the serial 

number of the enzyme in its sub-subclass (e.g. EC 1.1.1.145: 3�-hydroxy-�5-

steroid dehydrogenase, EC 1.1.1.146: 11�-hydroxysteroid dehydrogenase) (Webb, 

1992). A database of EC-numbers is available at 

[http://www.chem.qmw.ac.uk/iubmb/enzyme/]. An even more detailed 

functional description might include explicit information about the temporal and 

spatial expression (during development and/or in response to external stimuli), 

sub-cellular localization, regulatory properties (inhibitors and activators), 

biochemical properties such as Km, Vmax, temperature and pH optimum, etc. A 

very promising approach is gene ontologies which are controlled vocabularies to 

describe sequences (somewhat similar to the EC-number system, but not limited 
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to enzymes and biochemistry) (Gene-Ontology-Consortium, 2001). For more 

information, see [http://www.geneontology.org/]. 

1.2.3 Phylogenomic methods might allow 

accurate functional predictions in cases where 

similarity based methods fail 

Although sequence similarity based methods for functional prediction are 

very fast, readily automated, and usually sufficiently accurate, per se they make 

use of phylogenetic information no more than indirectly – as an array of 

numerical values instead of a tree-topology. Ignoring the tree-topology can lead 

to inaccurate predictions in certain situations (for example in sequence families 

where paralogs with different functions are present combined with gene loss or 

incomplete databases). 

On the other hand, methods based on sequence or motif family profiles are 

very robust but, oftentimes, the resulting annotations are too broad (e.g. a new 

sequence might be annotated just as “kinase”). An example of this approach is 

using the HMMER software (Eddy, 2000) to search the protein domain database 

Pfam (Bateman et al., 2000). 

Another approach for improved functional prediction are methods based 

on catalytic key residues (or sequence patterns). Identification of the amino acids 

responsible for the reaction catalyzed for each type of reaction would allow to 

make inferences about the catalytic activity of unknown sequences by pattern 
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matching. Unfortunately, such methods require intimate knowledge about each 

catalytic mechanism. In addition, by just concentrating on the key residues, all 

the information buried in the rest of the sequence is not utilized, and therefore 

the resolution of methods based on key residues is expected to be rather limited. 

An example of a database containing patterns (and profiles) is the PROSITE 

database (Bairoch et al., 1997) [http://ca.expasy.org/prosite/]. But this database 

does not necessarily concentrate on the catalytically important residues, it is a 

collection of any type of pattern or profile which can be used for the classification 

of sequences. 

Realizing these shortcomings, Tatusov et al. (1997; 2001) developed the 

Clusters of Orthologous Groups (COGs) method 

[http://www.ncbi.nlm.nih.gov/COG/]. This method is based on the assumption 

that orthologs are more similar to each other than they are to paralogs. The 

procedure to construct COGs starts with building groups of three sequences from 

three different species, whose members are reciprocal best hits to each other, and 

therefore assumed to be orthologs. This is done for all possible combinations of 

three species. Then, groups which share two members are merged into larger 

COGs until no more of such mergers are possible. The expectation is that each 

COG consists of individual orthologs or orthologous groups of paralogs from 

within the same species (i.e. no speciations after duplications). Each COG is 

assumed to have evolved from an individual ancestral gene through a series of 

speciation and duplication events. The COG method is probably superior to 

simpler sequence similarity based methods but it still does not use the power of 

phylogenetic analysis since clustering is a way of classifying levels of similarity 
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and is not an accurate method of inferring evolutionary relationships (Swofford 

et al., 1996). 

In order to obtain more reliable functional predictions, one might 

incorporate explicit evolutionary relationships into sequence function prediction 

methods. One way to accomplish this goal is by creating a phylogenetic tree of all 

homologs. The topology of the tree will allow the distinction between orthologs 

and paralogs by comparing with the species tree. The likely function of the 

sequences of interest can then be inferred by overlying the known function onto 

the tree. This approach has been termed phylogenomics by Eisen (Eisen, 

1998a; Eisen, 1998b; Eisen, 2001; Eisen and Hanawalt, 1999; Eisen et al., 1997; 

Eisen et al., 1995). 

It is the goal of this work to extend and automate phylogenomics. The rest 

of chapter 1 discusses the background of molecular evolution and methods for 

phylogenetic tree inference. 
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1.3 Molecular Evolution 

Molecular evolution is the study of the evolution of macromolecules. This 

section is a review of some key concepts from this large field of study. A brief 

overview of the history of molecular evolution and its most important concepts 

and controversies is followed by a discussion of the mechanisms of protein 

evolution (for reviews see Avise, 1994; Li, 1997; Nei, 1987; Page and Holmes, 

1998). In particular, the concept of gene duplication and its significance for 

protein function evolution are introduced here. The next section (1.4) discusses 

methods for the reconstruction of evolutionary histories of macromolecules. 

1.3.1 Historical Background 

The study of molecular evolution began at the turn of the twentieth 

century. Studies in immunohistochemistry showed that serological cross-

reactions were stronger for more closely related organisms than for less related 

ones. Nuttal (1904) used immunohistochemistry to infer that, for example, man’s 

closest relatives were the apes. Yet, intense research in molecular evolution 

started only in the 1950s, due to the introduction of new techniques such as 

protein sequencing, tryptic fragment pattern analysis, starch-gel electrophoresis, 

and improvements in immunohistochemistry (e.g. Brown et al., 1955; 

Zuckerkandl et al., 1960). In particular, Zuckerkandl and Pauling (1962; 1965b) 

showed that the characters in molecular sequences can contain a large amount of 

information (“molecules as documents of evolutionary history”). Many studies in 
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the 1960s were centered around the molecular evolution of humans, apes, and 

primates in general (e.g. Goodman, 1962). By then, the amino acid sequences of a 

variety of proteins such as hemoglobins and cytochromes c had been determined 

(e.g. Margoliash et al., 1968). Comparative studies of these sequences revealed 

that the rate of amino acid substitution in each of these sequences was 

approximately the same among different lineages. This lead to the proposal of a 

molecular clock (Zuckerkandl and Pauling, 1962; Zuckerkandl and Pauling, 

1965a), a theory which is controversial to this day (Ayala, 1999; Tajima, 1993; 

Zuckerkandl, 1987). 

An unexpectedly high rate of evolution in terms of nucleotide substitutions 

led Kimura (1968a; 1968b) to propose the neutral theory of evolution. King 

and Jukes (1969) published a similar idea, although from a more biochemical 

perspective. The neutral theory claims that molecular evolution is dominated by 

genetic drift of neutral mutations which have no selective cost. In other words, 

the neutralists model states that majority of mutations are deleterious and 

quickly removed by negative selection. The majority of fixed mutations are 

neutral, and only a small percentage is advantageous (summarized in Kimura, 

1983; Kimura, 1991). The opposing argument is that the natural selection of 

advantageous mutations is the more important force in molecular evolution 

(King, 1972). In this model, the majority of the fixed mutations are advantageous. 

The nearly neutral theory has been proposed by Ohta (1973) to explain the 

fact that the level of heterozygosity observed is oftentimes not as high as expected 

under the neutral theory. The nearly neutral theory claims that the majority of 

fixed mutations are either neutral or slightly deleterious (or slightly 
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advantageous) (reviewed in Ohta, 1992a; Ohta, 1992b; Ohta, 1996). The 

selection-neutrality debate has not been settled, even though the neutral (or 

nearly neutral) theory is oftentimes considered the null-model which has to be 

rejected before other, more specialized, models can be entertained (Moritz and 

Hillis, 1996; Ohta, 1996). 

1.3.2 Mechanisms of Protein Evolution 

Gene duplication and domain shuffling are important mechanisms for 

generating novel biochemical and regulatory functionality (Lynch and Conery, 

2000; Ohno, 1970). In particular, gene duplication might have been the primary 

mechanism for the evolution of complexity in higher organisms (Miklos and 

Rubin, 1996; Ohta, 1991). This section reviews these two related mechanisms and 

introduces some important definitions. 

1.3.2.1 Gene Duplication 

It is generally supposed that new genes evolve if mutations accumulate 

while selective constraints are relaxed by gene duplication (Kimura, 1983; Ohno, 

1970). The importance of gene duplication for evolution has probably first been 

recognized by Haldane (1932) (“… it [mutation pressure] will favour polyploids, 

and particularly allopolyploids, which possess several pairs of sets of genes, so 

that one gene may be altered without disadvantage…”, p. 194) and Muller (1935; 

1936). Cytological studies of the fruit fly Drosophila melanogaster showed that 
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certain banding patterns appear duplicated, illustrating “the manner of 

origination of extra genes in evolution”. Serebrowsky (1938) was the first to 

formulate a hypothesis of the possible steps involved (although his interpretation 

only attempted to explain a specialization in function and did not include the 

acquisition of new functions). Stephens (1951) concluded that “theoretically, 

duplication of loci would appear to offer a means of gaining a new function 

without losing the old one”, yet he was unable to find a convincing example in the 

available data. In the early 1960s the amino acid sequences for human 

hemoglobins became available (e.g. Konigsberg et al., 1961). Comparing the 

amino acid sequences of human myoglobin, and hemoglobins �, �, �, and � led 

Ingram (1961) to propose a model where myoglobin and the hemoglobins form a 

family of homologous proteins, and are related to each other by gene duplication 

events, similar to the illustration in Figure 1. [Homologs are defined as 

sequences which share a common ancestor (Fitch, 1966). This definition becomes 

unclear if mosaic proteins, which are composed of structural units originating 

from different genes (section 1.3.2.2), are considered.] These studies led Ohno 

(1970) to conclude that gene duplication is the only means for the creation of new 

genes. Even though it is now known that there are other means for creating new 

genes or new functionality, gene duplication is still considered the most 

important one (Doolittle, 1995; Miyata et al., 1994; Ohta, 1989a). [Other means 

for creating new functionality include: alternative splicing (Smith et al., 1989), 

RNA editing (Chan, 1993), overlapping genes such as tRNA genes on 

complementary strands of a DNA sequence (Anderson et al., 1981), and genes 

with more than one function or “gene sharing” (Piatigorsky et al., 1988) or “gene 
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recruitment” – a fascinating example for this are the crystallins which are 

responsible for the transparency of the eye lens but which also act as enzymes, 

catalyzing a variety of biochemical reactions. Crocodile � crystallin for example 

also serves as lactate dehydrogenase, bird � crystallin also has argininosuccinate 

lyase functionality; for a complete list see Wistow (1993).] More recent studies on 

gene duplication concentrate on the simulation of duplications and the 

corresponding population genetic models (e.g. Gu, 1999; Gu, 2001; Ohta, 1987; 

Ohta, 1988a; Ohta, 1988b; Ohta, 1989b). Recently, the significance of 

duplications has also been studied using artificial life simulations (Calabretta et 

al., 2000). The result of these studies appear to confirm the ideas presented in 

this section. 

Duplications may affect a part of a gene (partial or internal gene 

duplication or possibly domain duplication), a complete gene (complete gene 

duplication), parts of a chromosome, a complete chromosome, or a whole 

genome (Lander et al., 2001; Sankoff, 2001; Venter et al., 2001). For example, a 

current (controversial) theory suggests that vertebrates underwent two rounds of 

whole genome duplication (e.g. Friedman and Hughes, 2001; Meyer and Schartl, 

1999). 

Possible mechanisms for gene duplication include (Fitch et al., 1991; 

Lander et al., 2001; Ohta, 1989a; Venter et al., 2001): unequal crossing-over 

(recombination between nonallelic genes caused by misalignment of 

chromosomes during meiosis which leads to one chromosome with a duplication 

and to one with a deletion), gene conversion [exchange of strands between DNA 

molecules (originally proposed in Holliday, 1964; reviewed in Szostak et al., 
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1983)], errors during recombination and repair, and retrotransposition (resulting 

in intronless gene copies). 

Internal gene duplications result in gene elongation (Eck and Dayhoff, 

1966), which is an import mechanism for evolving complex genes from simple 

ones (similar to domain shuffling, see below). An example of a gene arisen by 

internal duplications is the �2 type I collagen gene. 42 of its 52 exons contain 

multiples of the 9 basepairs coding for the triplet Gly-X-Y. It is likely that these 

42 exons arose from one exon by multiple internal duplications (Li, 1983; 

Yamada et al., 1980). For a slightly curious example of a two domain hemoglobin 

in a water flea caused by internal duplication, see Kato et al (2001). Internal gene 

duplications can also lead to specific integrated assemblies such as �-propellers 

and �-trefoils (Andrade et al., 2001). 

All other types of duplications (other than internal gene duplications) 

result in two identical copies of each duplicated gene. As indicated above, one 

copy may acquire mutations or become subject to domain shuffling (section 

1.3.2.2) and eventually assume a different biological role (or become silenced by 

deleterious mutations) (Lynch and Conery, 2000). Several examples are known 

in which amino acid substitution in duplicated genes is accelerated relative to 

synonymous substitutions (Ohta, 1991; Ohta, 1993; Ohta, 1994). It is also 

possible that the duplicated copies are simply used to increase the amount of 

gene product (rRNA genes, for example). 

Multiple gene duplications lead to gene families (Dayhoff, 1976). For 

examples of gene families see Figures 1.1 and 1.6. Multiple gene duplications 

combined with exon shuffling lead to super families. For the purpose of this 
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work, gene families are defined as families of genes which have one common 

ancestor (and are therefore homologs) and which exhibit the same domain 

organization (“end to end similarity”). The term family is also used for individual 

domains with a common ancestor. Super families are defined as groups of genes 

containing at least one structural unit of common evolutionary origin (Go, 1981). 

Homologous sequences can be divided into orthologs, paralogs and 

xenologs (for examples see Figure 1.2). Orthologs are defined as two sequences 

which diverged by a speciation event (their last common ancestor on a 

phylogenetic tree corresponds to a speciation event). Paralogs are defined as 

two sequences which diverged by a duplication event (their last common ancestor 

corresponds to a duplication) (Fitch, 1970). Xenologs are defined as two 

sequences which are related to each other by horizontal gene transfer (via 

retroviruses, for example) (Gray and Fitch, 1983). [Some common 

misconceptions surround the concepts of orthology and paralogy. For example, a 

common mistake is the assumption that in order for two sequences to be 

paralogous to each other, they have to occur in the same species. For a review of 

these issues see Jensen (2001).] 
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Figure 1.1. The evolutionary history of human globin genes. 

A gene tree for the globin � and � subfamilies, as well as myoglobin is shown. Circled nodes 

indicate gene duplication events. From Li (1997). For more information on trees, see section 1.4.1. 

 

Figure 1.2. Examples of orthologs and paralogs. 

Circled nodes indicate gene duplication events. Mouse and human A are orthologous to yeast X1 

and X2 (lowest common ancestor is a speciation event). Mouse and human A are paralogous to rat 

B (lowest common ancestor is a duplication event). Rat B and yeast X1 and X2 are orthologous 

(their lowest common ancestor is a speciation event). Yeast X1 and X2 are paralogous to each 

other. Mouse A and human A are orthologous to each other. 
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1.3.2.2 Domain Shuffling 

Domain shuffling is another mechanism in addition to point mutations 

which can lead to modification of protein function. Domain shuffling can be 

divided into two types: domain duplication and domain insertion (also called 

domain recruitment) (Li, 1997). Domain duplication describes the duplication of 

one or more domains and is a type of internal duplication discussed above. 

Domain insertion leads to mosaic proteins, proteins composed of domains (or 

structural subunits) originating from different proteins (Doolittle, 1985; 

Doolittle, 1995; Patthy, 1987; Patthy, 1991). An example for a mosaic protein is 

tissue plasminogen activator (TPA) (see Figure 1.3). TPA converts plasminogen 

into plasmin, a serin protease which in turn lyses fibrin in blood clots (van 

Zonneveld et al., 1986). TPA is composed of four structural domains: one finger 

module originating from fibronectin (function: binding of fibrin to activate TPA), 

one growth factor module from epidermal growth factor (function: stimulation of 

cell proliferation), and two kringle modules from plasminogen (function: binding 

of clot proteins) (Patthy, 1985). For more examples see Doolittle (1995). 

Interestingly, it has been proposed to use domain shuffling for the rational design 

of novel protein functions (Ostermeier and Benkovic, 2000). 
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Figure 1.3. Tissue plasminogen activator is a mosaic protein. 

TPA is the result of domain shuffling and is composed of four structural domains: one finger 

module from fibronectin, one growth factor module from epidermal growth factor, and two 

kringle modules from plasminogen (Patthy, 1985). 
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1.4 Phylogenetic Inference Based on 

Molecular Sequences 

A phylogeny is the evolutionary history of a species or a group of species. 

Lately, the term is also being applied to the evolutionary history of individual 

DNA or amino acid sequences. This section discusses some of the methods and 

models used for the reconstruction of phylogenies based on sequence data (for 

the most, part amino acid sequences). In particular, the background for the tree 

building algorithms used in chapter 4 are introduced here. For reviews see 

Durbin et al. (1998), Felsenstein (1982; 1988; 1996), Nei (1996), Page and 

Holmes (1998), Saitou (1996), and Swofford et al. (1996). 

1.4.1 Phylogenetic Trees 

The evolutionary history of organisms or sequences can be illustrated 

using a tree-like diagram – a phylogenetic tree. For an example, see Figure 1.4, 

showing a phylogenetic tree proposed in 1866 by Haeckel (1866). 

A phylogenetic tree is a representation of the evolutionary relationships 

among a set of sequences, species or populations. The tree is a kind of graph and 

is composed of branches (edges) and nodes (vertices). Nodes are divided into 

internal and external ones. The external nodes are also called operational 

taxonomic units (OTUs), leaves, or tips. Typically, the external nodes correspond 

to contemporary sequences, species, or populations. 
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Branch lengths might be according to time or evolutionary distance, or the 

tree simply represents the evolutionary relationships and branch lengths are 

arbitrary (as in the trees shown in Figures 1.5 and 1.6). 

Phylogenetic trees can either be completely binary, which means that each 

node has two child nodes (bifurcation or dichotomy), or they can contain 

multifurcations or polytomies (more than two children per node). 

Multifurcations are used to express radiations and/or uncertainties about the tree 

topology (Hennig, 1966). 

A tree can be either rooted if the direction of time is known or unrooted if 

the direction of time is unknown. A rooted tree has a special internal node, called 

the root which is defined as the position of the common ancestor. 

A unrooted completely binary tree with N external nodes has 2N-3 

branches, and N-2 internal nodes. A rooted completely binary tree with N 

external nodes has 2N-2 branches, and N-1 internal nodes. 

The number of different tree topologies increases rapidly with an increase 

in number of external nodes. The general equation for the possible number of 

topologies for unrooted completely binary trees (T) with N (>2) external nodes is 

(Cavalli-Sforza and Edwards, 1967): 
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For example, there are 221,643,095,476,699,771,875 different unrooted tree 

topologies with 20 external nodes. 
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Figure 1.4. A phylogenetic tree proposed by Haeckel (1866). 
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1.4.1.1 Gene Trees and Species Trees 

Initially, phylogenetic trees were built based on the morphology of 

organisms. Around 1960 molecular sequences were recognized as containing 

phylogenetic information and hence as valuable for tree building (section 1.3.1) 

(Zuckerkandl and Pauling, 1962; Zuckerkandl and Pauling, 1965b). A tree built 

based on sequence data is called a gene tree since it is a representation of the 

evolutionary history of genes, as opposed to organisms. Figures 1.1, 1.5, and 1.6 

are illustrations of gene trees. A tree illustrating the evolutionary history of 

organisms is called a species tree (the tree in Figure 1.4 is a species tree based 

on morphology). In general, a gene tree does not reflect the evolutionary history 

of all the host species associated with the genes in the tree, as in Figure 1.6. This 

is due to the presence of gene duplications. Only in the complete absence of 

duplications can a gene tree correspond to a species tree, as shown in Figure 1.5.  
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Figure 1.5. A gene tree of orthologs based on Interleukin-3 protein 

sequences. 

Sequences are named with their SWISS-PROT identifiers. PANTR stands for Pan troglodytes 

(chimpanzee), HYLLA for Hylobates lar (common gibbon), MACMU for Macaca mulatta (rhesus 

macaque), BOVIN for Bos taurus. The tree is based on the Pfam (Bateman et al., 2000) alignment 

for Interleukin-3 (Accession number: PF02059) (Burger et al., 1994). The tree was constructed by 

neighbor joining (section 1.4.2.5.2) from Felsenstein’s PHYLIP package (Felsenstein, 2001). The 

distance used for neighbor joining were PAM-based maximum likelihood distances (section 

1.4.2.2), calculated by PROTDIST from PHYLIP. The tree diagram was produced by ATV (chapter 

2) (Zmasek and Eddy, 2001a). 
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Figure 1.6. A gene tree of orthologs and paralogs based on Bcl-2 family 

protein sequences. 

Circled nodes indicate gene duplication events. BOVIN stands for Bos taurus, XENLA for 

Xenopus laevis, CAEEL for Caenorhabditis elegans, CAEBR for Caenorhabditis briggsae. The 

tree is based on the Pfam (Bateman et al., 2000) alignment for the apoptosis regulator proteins of 

the Bcl-2 family (Accession number: PF00452) (reviewed in Chao and Korsmeyer, 1998). The tree 

was constructed in the same manner as described for Figure 1.5. The speciation duplication 

inference algorithm SDI (chapter 3) (Zmasek and Eddy, 2001b) was used to determine the 

positions of the gene duplications. The tree diagram was produced by ATV (chapter 2) (Zmasek 

and Eddy, 2001a). 
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1.4.2 Methods for Phylogenetic Inference 

Phylogenetic methods differ both in the type of input data and in the 

actual tree building method. The input data falls into one of two categories: 

discrete characters states, and similarities or distances. Discrete characters states 

include molecular sequence data, restriction endonuclease data, gene order data, 

or morphological character states. Similarities or distances are either measured 

directly (with hybridization experiments, for example), or discrete characters 

states are transformed into distances (section 1.4.2.2). In this work, the focus is 

on molecular sequence data (protein sequences). Trees are either built by an 

algorithmic method, which usually will yield one tree, or optimality criteria are 

used to evaluate the “likelihood” of a given tree or to select the “most likely” tree 

out of a set of given trees. 

Before individual tree building methods are discussed, a historical 

overview is presented. 

Initially, phylogenetic trees were built intuitively based on the morphology 

of organisms (as in Figure 1.4). In 1950, Hennig (1950; 1965; 1966) stated a 

systematic procedure (“Hennig’s method”) for inferring phylogenies from a set 

of morphological characters (“the rules for evaluating morphological characters 

as indicators of degree of phylogenetic relationship”). In this approach, 

hierarchical monophyletic groups of species (i.e. trees) are constructed based on 

knowledge of which states are ancestral (“plesiomorphous”) and which ones are 

derived (“apomorphous”). A weakness of Hennig’s method is that it cannot deal 
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with conflicting data. Although Hennig is well known for stating this approach, it 

had been applied previously (e.g. Mitchell, 1901). 

Sokal and Sneath, where among the first to develop objective schemes for 

measuring the pairwise distance (similarity) between organisms (and to use 

computers to do so) (Sneath, 1957a; Sneath, 1957b; Sneath and Sokal, 1962; 

Sneath and Sokal, 1973; Sokal, 1956; Sokal, 1961; Sokal and Sneath, 1963). For 

example, to calculate a mean squared difference between two species, Sokal 

(1961) proposed the following formula: 

 ��
�

����
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where 1Xi is the state code for species 1 for character i, and n is the number of 

characters. Similar formulas have been proposed earlier, in particular to measure 

the resemblance among anthropological material (mostly skulls) (e.g. Pearson, 

1926). Especially, Rao (1952) used an intuitive approach to cluster analysis (see 

below) to produce tree-like diagrams of Indian tribes (based on anthropometrical 

characters). 

Using pairwise distances between taxa as input, the UPGMA algorithm 

(section 1.4.2.5.1) presented by Sokal and Michener (1958) clusters according to 

average similarity. The resulting clusterings correspond to a phylogenetic tree 

under the assumption of a molecular clock (see above). 

Parsimony methods (section 1.4.2.4.1) on continuous data were 

introduced by Edwards and Cavalli-Sforza (1963; 1964) in an effort to use gene 
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frequencies to make a phylogeny of human populations. Edwards and Cavalli-

Sforza (1964) also introduced the maximum likelihood method (section 

1.4.2.4.2), with gene frequencies as data. 

Doolittle and Blomback (1964) used the number of amino acid changes in 

the sequences of fibrinopeptides from various artiodactyls to manually construct 

a phylogenetic tree. 

Edwards and Cavalli-Sforza (1965) introduced a systematic method for 

cluster analysis which minimizes the within-cluster sum of squares of 

distances. It starts with all elements as members of the same cluster and proceeds 

to subdivide that cluster into successively smaller ones until each element is the 

only member of its own cluster. As an example, they applied their method to the 

same morphological data of Indian tribes as Rao (1952) to produce tree diagrams. 

The first discrete character parsimony (section 1.4.2.4.2) method was 

introduced by Camin and Sokal (1965). Eck and Dayhoff (1966) were the first to 

devise a parsimony method for protein sequence data, which they employed to 

construct trees for cytochrome c and globins. 

In 1967, both Fitch and Margoliash (1967), and Cavalli-Sforza and 

Edwards (1967) presented least squares methods (section 1.4.2.3.1) which 

find the optimal tree by minimizing the differences between the observed 

distances and the distances on the tree. 

Neyman (1971) was the first to apply maximum likelihood to molecular 

sequences. 

In the last 30 years, many more methods for phylogenetic inference based 

on molecular sequences have been published. Many of them are reviewed in 
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Durbin et al. (1998), Felsenstein (1982; 1988; 1996), Nei (1996), Page and 

Holmes (1998), Saitou (1996), and Swofford et al. (1996). Some of the major 

methods will be discussed later in the chapter. 

1.4.2.1 Multiple Sequence Alignment 

Before a tree building or evaluation approach can be applied on molecular 

sequences, the sequences in question have to be aligned. The quality of the 

multiple alignment will determine the quality of the tree. In other words, the 

alignment should reflect biology (positional homology) (Swofford et al., 1996). 

Up until 1987, it was standard practice to construct multiple alignments 

manually. This is obviously very tedious and error prone. Early computer 

programs for multiple alignments were either too slow (such as standard 

dynamic programming approaches (Durbin et al., 1998) if more than three or 

four sequences were to be aligned) or not widely used [such as methods based on 

trying to find an alignment block or establishing a consensus sequences in a 

iterative manner (e.g. Bains, 1986; Johnson and Doolittle, 1986; Sobel and 

Martinez, 1986)]. More practical methods are based on a idea by Sankoff (1975) 

(progressive alignment). Progressive alignment starts with making an initial 

guess (guide tree) about the phylogenetic relationship of the sequences to be 

aligned. Then, it uses the branching order of this initial phylogenetic tree to align 

the sequences, starting with the most closely related pairs, and then gradually 

aligns these groups together. There are many variations of this approach, most of 

them using various heuristics to improve the basic progressive alignment (e.g. 
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Corpet, 1988; Feng and Doolittle, 1987; Gribskov et al., 1987; Hein, 1989). 

Currently, the most widely used programs for multiple alignment are CLUSTAL 

W (Thompson et al., 1997; Thompson et al., 1994) and PILEUP (Wisconsin 

Package; Genetics Computer Group, Madison, WI). CLUSTAL W uses neighbor 

joining (section 1.4.2.5.2) to build the guide tree, whereas PILEUP uses UPGMA 

(section 1.4.2.5.1). Various multiple sequence alignment programs are compared 

in Thompson (1999). 

1.4.2.2 Pairwise Protein Distance Calculation 

All possible pairwise distances have to be calculated from a multiple 

sequence alignment (section 1.4.2.1) prior to any tree building method or 

optimality criterion based on pairwise distances. Most textbooks do an excellent 

job at describing this and the corresponding models for DNA sequences (e.g. 

Swofford et al., 1996). Thus, and because this work concentrates on proteins, only 

amino acids sequences are considered in this section. For a review of some of the 

ideas presented here, see Lio and Goldman (1998). 

The simplest method to measure the distance between two amino acid 

sequences is by their fractional dissimilarity p, defined as follows: 
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where nd is the number of aligned sequence positions containing non-identical 

amino acids and ns is the number of aligned sequence positions containing 
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identical amino acids. Unfortunately, this is unrealistic. For instance, it does not 

take into account superimposed changes (multiple mutations at the same 

sequence location) and the different chemical properties of amino acids (for 

example, changing leucine into isoleucine is more likely and should be weighted 

less than changing leucine into proline). To take into account superimposed 

changes, we can model amino acid substitution as a Poisson process (see section 

1.4.2.4.2) (Nei, 1987), and calculate the distance between two amino acid 

sequences as follows: 

  (1-4) � pd ��� 1ln �

To better approximate distances calculated by Dayhoff et al. (1978), Kimura 

(1983) proposed the following correction: 

 � �22.01ln ppd ����  (1-5) 

But even with this correcti0n, realistic distances cannot be expected, in particular 

if p is larger than 0.7. 

Karlin and Ghandour (1985) proposed a method of weights based on 

chemical, functional, charge and structural properties of the amino acids. 

Similarly, Feng et al. (1985) proposed weights based on the structural similarities 

and the ease of genetic interchange. The problem with models that attempt to 

incorporate “real” amino acid similarities is that they are based on groupings 

which are still artificial and do not reflection evolutionary processes (Jones et al., 

1992). 
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A more realistic approach for estimating evolutionary distances is to apply 

maximum likelihood (section 1.4.2.2.1) to empirical amino acid replacement 

models, such as the well known PAM transition probability matrices (Dayhoff et 

al., 1978), or the BLOSUM matrices (Henikoff and Henikoff, 1992). 

A PAM transition probability matrix is composed of 20�20 elements 

which correspond to the probabilities for each possible amino acid transition in 

one evolutionary time unit (see Table 1.1). The time unit used in the matrix is the 

time during which, on the average, one amino acid substitution per 100 residues 

takes place. This time unit is also called one PAM, PAM standing for “accepted 

point mutation” (“accepted” by natural selection). The PAM1 matrix (the PAM 

matrix for the evolutionary time unit of one PAM) has been constructed by 

Dayhoff et al. (1978) from empirical data for 71 groups of closely related proteins. 

First, phylogenetic trees for each of these groups were constructed by parsimony 

(section 1.4.2.4.2). Based on these trees, relative frequencies for substitutions 

among various amino acids were inferred. These frequencies were then 

normalized into values that represented the probability that 1 amino acid in 100 

would undergo change, resulting in the PAM1 matrix shown in Table 1.1. Other 

probability matrices for proteins that had undergone x amino acid substitutions 

per 100 residues were then derived by multiplying PAM1 by itself x times (see, for 

example, Mirsky, 1982), resulting in matrices such as PAM50 or PAM250. 

A different approach was used by Henikoff and Henikoff (1992) for the 

construction of the BLOSUM matrices. These matrices were derived from local, 

ungapped alignments of distantly related protein sequences. Matrices in this 
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series are also identified by a number (e.g. BLOSUM250). But in contrast to the 

PAM matrices, these numbers refer to the minimum percentage identity of the 

blocks of aligned amino acids used for matrix construction. 

Many more rate matrices have been developed. Some examples of more 

recently developed ones are: the JTT matrix which was built in the same way as 

the PAM1 matrix but on larger data sets (Jones et al., 1992), the mtREV matrix 

which was built specifically for proteins encoded by mitochondrial DNA (Adachi 

and Hasegawa, 1996), the VT matrix (Mueller and Vingron, 2000), and the WAG 

matrix (Whelan and Goldman, 2001). 

1.4.2.2.1 A maximum Likelihood Approach to Distance 

Calculation 

The problem of finding the evolutionary distance between two sequences 

using rate matrices can be described as follows. Given an instantaneous rate 

matrix M (such as PAM1) and an alignment A of two sequences a and b, we 

would like to determine the “most likely” evolutionary distance or time between a 

and b. This is a maximum likelihood approach. The likelihood LH of a hypothesis 

H (an evolutionary distance, for example) given same data D (an alignment, for 

example) is the probability of D given H:  

  (1-6) � HDLH |P� �

Maximum likelihood approaches estimate hypotheses (or parameters) by 

maximizing LH. for a given D. 
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In order to apply the maximum likelihood approach to distance 

calculations we need to be able to calculate a transition probability matrix P(t) for 

a finite time interval (or evolutionary distance) t, given a transition probability 

matrix M for a unit of time (such as PAM1); P(1) = M. 

According to Kishino et al. (1990) P(t) is well approximated by: 

  (1-7) � � RMP tt et ��

where R is a function of the eigenvalues and eigenvectors of M: 

  (1-8) 1

20

1

.0
.

0.
�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

� UUR

�

�

 i

i
iii

i
Mf

�� log
1

20

1
�
�

�

�

01.0
 (1-9) 

�
�

�

20

1
1

i
iii Mf corresponds to the number of substitutions in a unit time; fi (i=1,…,20) 

is the normalized frequency of amino acid i (e.g. Table 22 in Dayhoff et al., 1978); 

and �i (i=1,…,20) is an eigenvalue of M. 
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U is a matrix whose columns are the eigenvectors ui (i=1,…,20) of M: 

  (1-10) � 201,...,uuU � �

Components of P(t) can be written as: 

  (1-11) �
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where (Adachi and Hasegawa, 1996): 

  (1-12) 1�
� kjikijk UUc

Using (1-6), we can obtain the maximum likelihood estimate for t through the 

Newton-Raphson method or the bisection method (see Press et al., 1992), for 

which we need the following derivatives: 
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These calculation can be made more time efficient if an initial guess for t is 

provided, possibly by an equation similar to ( ). 1-5
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The resulting distance computation is quite slow, but appears to be 

adequate (Felsenstein, 1996). Yet, one unrealistic assumption is still being made: 

all amino acid positions are assumed to change at the same rate. A more realistic 

model allows for a gamma distribution of evolutionary rates among sites as 

described in Jin and Nei (1990) or Nei et al. (1976). Unfortunately this added 

realism comes at a huge loss in time efficiency. 

 

 ORIGINAL AMINO ACID (i) 

 Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val 

 A R N D C Q E G H I L K M F P S T W Y V 

A 9867 2 9 10 3 8 17 21 2 6 4 2 6 2 22 35 32 0 2 18 

R 1 9913 1 0 1 10 0 0 10 3 1 19 4 1 4 6 1 8 0 1 

N 4 1 9822 36 0 4 6 6 21 3 1 13 0 1 2 20 9 1 4 1 

D 6 0 42 9859 0 6 53 6 4 1 0 3 0 0 1 5 3 0 0 1 

C 1 1 0 0 9973 0 0 0 1 1 0 0 0 0 1 5 1 0 3 2 

Q 3 9 4 5 0 9876 27 1 23 1 3 6 4 0 6 2 2 0 0 1 

E 10 0 7 56 0 35 9865 4 2 3 1 4 1 0 3 4 2 0 1 2 

G 21 1 12 11 1 3 7 9935 1 0 1 2 1 1 3 21 3 0 0 5 

H 1 8 18 3 1 20 1 0 9912 0 1 1 0 2 3 1 1 1 4 1 

I 2 2 3 1 2 1 2 0 0 9872 9 2 12 7 0 1 7 0 1 33 

L 3 1 3 0 0 6 1 1 4 22 9947 2 45 13 3 1 3 4 2 15 

K 2 37 25 6 0 12 7 2 2 4 1 9926 20 0 3 8 11 0 1 1 

M 1 1 0 0 0 2 0 0 0 5 8 4 9874 1 0 1 2 0 0 4 

F 1 1 1 0 0 0 0 1 2 8 6 0 4 9946 0 2 1 3 28 0 

P 13 5 2 1 1 8 3 2 5 1 2 2 1 1 9926 12 4 0 0 2 

S 28 11 34 7 11 4 6 16 2 2 1 7 4 3 17 9840 38 5 2 2 

T 22 2 13 4 1 3 2 2 1 11 2 8 6 1 5 32 9871 0 2 9 

W 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 9976 1 0 

Y 1 0 3 0 3 0 1 0 4 1 1 0 0 21 0 1 1 2 9945 1 

R
E

P
L

A
C

E
M

E
N

T
 A

M
IN

O
 A

C
ID

 (
j)

 

V 13 2 1 1 3 2 2 3 3 57 11 1 17 1 3 2 10 0 2 9901 

Table 1.1. PAM1, a transition probability matrix for the evolutionary 

distance of 1 PAM. 

An element of this matrix, Mij, gives the probability that the amino acid in column i will be 

replaced by the amino acid in row j after a given evolutionary interval, in this case 1 PAM. Thus, 

there is a 0.56% probability that Asp will be replaced by Glu. To simplify the appearance, the 

elements are shown multiplied by 10,000. Adapted from Dayhoff et al (1978). 
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1.4.2.3 Optimality Criteria Based on Pairwise 

Distances 

Optimality criteria are used to assign a score to a given tree. For tree 

reconstruction, all possible trees (or an “appropriate” subset thereof) have to be 

proposed by a proposal mechanism and then searched for the tree with the best 

score. Many different (heuristic) algorithms for proposing and searching trees 

exist. These algorithms are not discussed here. For a review see Swofford et al. 

(1996). Since usually a large number of trees have to be evaluated (see equation 1-

1), optimality-criteria based methods tend to be time consuming. 

For both optimality criteria as well as for algorithmic methods based on 

pairwise distances, it is crucial to establish whether the pairwise distance data is 

additive or ultrametric as well – which methods are applicable depends on this 

distinction. In the following, the terms additive and ultrametric are defined. 

If we could determine the true evolutionary distances from a given 

alignment, these distances would have the property of additivity, as illustrated 

in Figure 1.7. In this case, a tree exists for which the sum of branch lengths 

between each pair of external nodes (e.g. a+e+b) precisely equals the 

evolutionary distance between them (e.g. dAB). Additive distances satisfy the four-

point condition (Buneman, 1971): for any four external nodes A, B, C, and D: 

  (1-15) � BCADCDABBDAC dddddd ���� ,max �

Unfortunately, due to the finite amount of data available, stochastic errors will 

prevent the estimated distances from fitting exactly onto a tree. Least squares 
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optimality criteria (section 1.4.2.3.1) measure the fit of the estimated evolutionary 

distances to an additive tree. Minimum evolution optimality criteria (section 

1.4.2.3.2) and the neighbor joining algorithm (section 1.4.2.5.2) assume additivity 

in their input data. 

Ultrametric distances (Figure 1.7.B) are a subset of additive distances. 

They adhere to the three-point condition: for any three external nodes A, B, and 

C: 

  (1-16) � BCABAC ddd ,max� �

In terms of phylogenetic trees, an ultrametric tree is an additive tree under the 

additional constraint of a (constant) molecular clock (see above). The UPGMA 

algorithm (section 1.4.2.5.1) constructs an ultrametric tree from ultrametric 

distances. 
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Figure 1.7. Additive and ultrametric trees. 

An additive tree is shown in A. The tree in B also exhibits ultrametric properties. Adapted from 

Swofford et al. (1996). 
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1.4.2.3.1 Least Squares 

An optimal tree according to least squares (and related) criteria is selected 

by minimizing the disagreement E between the tree and the estimated pairwise 

distances (estimated from a multiple alignment): 

 

�

� �
�

� ��

��

1

1 1

N

i

N

ij
ijijij pdwE  (1-17) 

where N is the number of external nodes, dij is the distance estimate between 

sequences i and j and pij the length of the path connecting external nodes i and j 

in the given tree. Setting �=2 represents a least squares criterion. For �=1, the 

absolute differences will be minimized. Setting the weighting wij=1 assumes that 

all distance estimates are subject to the same magnitude of error and corresponds 

to a unweighted least squares criterion (Cavalli-Sforza and Edwards, 1967). 

Setting 2

1

ij
ij d

w �  assumes that all estimates are uncertain by the same percentage 

(Fitch and Margoliash, 1967). 
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1.4.2.3.2 Minimum Evolution 

By means of the minimum evolution method, branch lengths are fitted to a 

tree according to a unweighted least squares criterion, but the optimality 

criterion to evaluate and compare trees is to minimize the sum of all branch 

lengths L (Kidd and Sgaramella-Zonta, 1971; Rzhetsky and Nei, 1992; Rzhetsky 

and Nei, 1993): 

  (1-18) �
�

�

�
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where N is the number of external nodes, and bk is a branch length. The 

minimum evolution tree is the one which minimizes L. 

1.4.2.4 Optimality Criteria Based on Character Data 

Character data based methods work directly on molecular sequences and 

thus do not require the calculation of pairwise distances. 

1.4.2.4.1 Maximum Parsimony 

Maximum parsimony criteria are based on the principle of Occam’s razor, 

which states “One should not increase, beyond what is necessary, the number of 

entities required to explain anything”. The central idea is that the preferred 

evolutionary tree requires the smallest number of evolutionary changes to explain 

the differences observed among the sequences under study. Hypothetical 
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sequences are assigned to the ancestral (internal) nodes in such a way as to 

minimize the total number of substitutions. In traditional parsimony (Fitch, 1971) 

any substitution is assigned a cost of 1, whereas identical residues have a cost of 

0. Weighted parsimony (Sankoff and Kruskal, 1983) assigns different costs to 

different types of substitutions. Maximum parsimony is in fact an approximation 

to maximum likelihood, as pointed out by Felsenstein (1981b) and reviewed in 

Durbin et al. (1998). 

1.4.2.4.2 Maximum Likelihood 

Probabilistic methods can be used to assign a likelihood to a given tree and 

therefore allow the selection of the tree which is most likely given the observed 

sequences (Edwards and Cavalli-Sforza, 1964; Felsenstein, 1981a; Kashyap and 

Subas, 1974; Neyman, 1971). 

The probability for one residue a to change to b in time t along a branch of 

a tree is given by P(b|a,t). Its actual calculation is dependent on what model for 

sequence evolution is used. The simplest model is a Poisson process, which 

assumes that all changes between amino acids occur at the same rate and that the 

equilibrium frequencies of all amino acids are equal. The probabilities for this 

model are: 
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where � is the substitution rate. In practice, more sophisticated models, such as 

the PAM matrices (see above), are usually used (Adachi et al., 1993; Adachi and 

Hasegawa, 1992; Strimmer and von Haeseler, 1996). 

The likelihood of a tree T with branch lengths t�, given the observed 

sequences x�, can be written as P(x�|T, t�) (see Durbin et al., 1998). For one site 

(one position in the multiple alignment of x�), the likelihood can be calculated as 

follows: 
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  (1-20) 

x1,…,xn are the amino acid residues at the n external nodes of T. �(i) denotes the 

parent node of i. P(ai|a�(i),ti) is the probability of observing residue ai at internal 

node i, given a�(i) at its parent node and branch length ti. These probabilities are 

multiplied over all internal nodes (labeled from n+1 to 2n-1). P(xi|a�(i),ti) is 

probability of observing xi at an external node i, given a�(i) at its parent node and 

branch length ti. These probabilities are multiplied over all external nodes 

(labeled from 1 to n). Since we generally do not know the residues at the internal 
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nodes, we have to sum over all possible assignments of residue ak to internal 

nodes k. qa is the equilibrium frequency of a. 

The probabilities at each internal node can be calculated based solely on 

the probabilities at its direct child nodes. Therefore, the complete probability can 

be computed by working up the tree from the external nodes in post order 

traversal, as described by Felsenstein (1981a). 

To calculate the likelihood for the complete alignment, the likelihood 

values for each site are multiplied with each other. 

As for ML methods for distance calculation, a limitation of the methods 

described above is that they assume the same rate of evolution for all positions. 

This limitation has been removed from nucleotide sequence ML methods, using 

gamma distributed rates or hidden Markov model approaches (Felsenstein and 

Churchill, 1996; Yang, 1993; Yang, 1994; Yang, 1995). 

1.4.2.5 Algorithmic Methods Based on Pairwise 

Distances 

As mentioned above, these algorithmic approaches produce one tree, 

taking pairwise distances as input. 

1.4.2.5.1 UPGMA 

UPGMA (Sokal and Michener, 1958) stands for unweighted pair group 

method using arithmetic averages. This clustering algorithm produces 

ultrametric, rooted trees based on ultrametric distances (see above). If the input 
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distances are not ultrametric (no molecular clock), then UPGMA might 

reconstruct an incorrect tree. UPGMA first places each sequence in its own 

cluster and then iteratively clusters together the two most similar clusters, 

assigning the new cluster the weighted average distances of its members. The 

main advantage of this method is its speed [the overall time complexity of 

UPGMA is O(N2)]. 

1.4.2.5.2 Neighbor Joining 

As opposed to UPGMA, neighbor joining (NJ) is not misled by the absence 

of a molecular clock. It recreates the correct additive tree as long as the input 

distances are additive (Studier and Keppler, 1988). NJ is effective even if 

additivity is only approximated (Atteson, 1997). Trees produced by NJ are 

unrooted. The NJ method was introduced by Saitou and Nei (1987). 

The NJ algorithm is as follows (Studier and Keppler, 1988; Swofford et al., 

1996): 

 

Input: N�N matrix of estimated pairwise distances. 

Output: One unrooted, fully resolved binary tree. 
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1. For each pair i, j of N OTUs, compute (for all j>i):  

  (1-21) jiijij RRDNS ���� )2(

where Dij is the estimated distance between i and j, and: 

  (1-22) �
�

�

N

k
iki DR

1

2. Pick a pair i, j for which Sij is minimal. Create a new node u whose three 

branches join nodes i, j, and the rest of the tree (see Figure 1.8). The branch 

lengths from u to i and j are: 
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  (1-24) iuijju bDb ��

3. Compute the pairwise distances from u to each other OTU (for all k�i,j): 

 � ijjkikku DDDD ���

2
1 � (1-25) 

4. Remove distances to nodes i and j and decrease N by 1. 
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5. If more than two nodes remain, go back to step A. Otherwise join the two 

remaining nodes with a branch of length Dij. 

 

The overall time complexity of NJ is O(N3) (Studier and Keppler, 1988). 

Step 2. can be explained as follows (Saitou, 1996). Starting with a star-like 

tree (no clustering ) of N OTUs we would like to choose the one pair of OTUs that 

results in the smallest sum of branch lengths if they were to be joined as 

neighbors (two nodes are called neighbors if they are connected through a single 

internal node). For the tree in Figure 1.8, OTUs i and j were chosen to be joined 

as neighbors. Minimizing equation (1-21) allows us to find the two OTUs joining 

of which results in the smallest sum of branch lengths. In this lies the crucial 

difference to UPGMA: in UPGMA, the pair for which Dij minimal is picked in 

each iteration cycle. In NJ, the pair for which – informally speaking – Dij is 

minimized and the distance to all other OTUs is maximized is selected in each 

cycle. 

NJ is very fast, suitable for large data sets, and reasonably accurate as long 

as enough sequence data is available for analysis and the internal branches are 

not small compared to the length of the branches leading to the leaves (Hillis et 

al. 1994). As mentioned above, the crucial advantage of NJ over UPGMA is that it 

does not have the precondition of a molecular clock. 
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Figure 1.8. Tree of N external nodes in which i and j are neighbors. 

Adapted from Saitou (1996). 

1.4.2.6 Bootstrapping 

Bootstrapping is a resampling with replacement. It provides us with 

numbers that indicate how much we should trust a particular feature of a 

phylogenetic tree (e.g. man and gorilla forming a clade which does not include 

the platypus) (Felsenstein, 1985; Mueller and Ayala, 1982). It works as follows 

(see Figure 1.9 for a simple example). A resampled multiple alignment is created 

by randomly picking columns from a given multiple alignment (bootstrap 

resample 1 in Figure 1.9 is created by picking the columns from the original 

alignment in the following order: 2, 2, 6, 5, 5, 1). Since the resampling is with 

replacement, a column from the original alignment can appear multiple times in 

the resampled alignment (and this is the point, since simply changing the order 

of the columns would not make a difference for tree inference). In practice, the 

original alignment is resampled many times (100 to 1000 times). For each 

resampled alignment, a phylogenetic tree is then inferred. The frequency with 

which a particular feature appears is taken as a measure of the confidence we can 

have in it. Oftentimes, each node of a phylogenetic tree is associated with a 
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bootstrap value. These numbers indicate the frequency with which that particular 

node appears (the presence of a binary node is determined by the fact that a 

binary node separates all OTUs of a tree in precisely two groups: those which are 

children of this node and those which are not). 

 

 

Original sequence alignment: 

Sequence 1: ARNDCQ 

Sequence 2: VRNDCQ 

            123456 

 

Bootstrap resample 1: 

Sequence 1: RRQCCA 

Sequence 2: RRQCCV 

            226551 

 

Bootstrap resample 2: 

Sequence 1: AQCDCQ 

Sequence 2: VQCDCQ 

            165456 

 

Figure 1.9. An example of the bootstrap resampling procedure. 

Two bootstrap resamples of the original amino acid multiple alignment are shown. It is indicated 

which columns of the original alignment were picked to create the two resamples. 
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1.5  Overview 

 

The objective of this work is the development and evaluation of 

computational methods for sequence function prediction based on molecular 

evolution (phylogenomics). A phylogenomic analysis of a sequence with unknown 

function can be divided into three steps: First, the domain composition of the 

query is determined, for instance by using the HMMER software (Eddy, 2000) 

and the Pfam domain database (Bateman et al., 2000). Second, a gene tree is 

inferred for each domain of the query sequence based on the appropriate Pfam 

alignments. For this step, the tree building methods discussed in section 1.4.2 are 

employed. Third, various inferences about the query are made based on the 

topology (and possibly branch lengths) of the gene tree(s). It is this third step 

which is the focus of this work. 

Visual inspection of gene trees annotated with functional information and 

“duplication” or “speciation” on internal nodes can be an easy and intuitive 

approach to make phylogenomic inferences. ATV (A Tree Viewer), a computer 

program for this purpose was developed during the course of this work and is 

presented in chapter 2. While ATV can be used as a general purpose tree display 

tool [it can display any tree described in the commonly used “New Hampshire” 

format (Felsenstein, 2001)], the primary design goal was to create a means for 

manual phylogenomics. ATV allows the display of trees annotated with concepts 

related to sequence function (EC-numbers and natural language descriptions). 

Internal nodes can be shown as either speciation or gene duplication events. 
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Duplications and speciations can be inferred with the SDI algorithm presented in 

chapter 3 (in fact, newer versions of ATV include SDI). ATV is also part of RIO, 

the automated system for phylogenomics presented in chapter 4 (for example, 

ATV can display, and color according to the orthology bootstrap values calculated 

by RIO). 

As stated in section 1.3.2.1, gene duplication is thought to oftentimes lead 

to the generation of new sequence functionality. Hence, knowing which nodes of 

a gene tree represent duplication events is important for any functional analysis 

based on phylogeny. The only general means by which duplications and 

speciations on a gene tree can be inferred is by comparing it to a trusted species 

tree. SDI (Speciation Duplication Inference), a simple but fast algorithm for this 

purpose, was developed and evaluated during the course of this work. SDI is 

presented in chapter 3. 

Once duplications and speciations on a gene tree are known, sequences 

can be divided into orthologs and paralogs relative to a query sequence whose 

function is to be inferred. Ideally, functional annotation is then transferred from 

the orthologs to the query. Unfortunately, gene trees can be unreliable. 

Therefore, it is advantageous to make phylogenomic inferences over a set of 

bootstrap resampled trees (see section 1.4.2.6). The frequency with which a 

particular sequence appears orthologous to the query sequence is taken as a 

measure of the confidence we can have in that particular orthology. This is 

implemented in the RIO (Resampled Inference of Orthologs) procedure 

described and evaluated in chapter 4. Besides orthology, RIO implements further 

measures based on the topology of gene trees. These measures – “super-
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orthology”, “ultra-paralogy”, and “subtree-neighbors” – are introduced and 

justified in chapter 4 as well. 
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2.1 Abstract 

Summary: A Tree Viewer (ATV) is a Java tool for the display and manipulation 

of annotated phylogenetic trees. It can be utilized both as a standalone 

application and as an applet in a web browser. 

Availability: ATV is available via WWW at 

[http://www.genetics.wustl.edu/eddy/atv/] and via FTP at 

[ftp://ftp.genetics.wustl.edu/pub/eddy/software/forester.tar.Z] 

Contact: zmasek@genetics.wustl.edu 
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2.2 Introduction 

Many proteins belong to large families consisting of subfamilies with 

different biological functions. This complicates efforts to infer the function of new 

proteins by computational sequence analysis. Neither of the two main sequence 

analysis methods handle large protein families satisfactorily in high-throughput 

automated annotation. Pairwise sequence similarity searches, exemplified by 

BLAST (Altschul et al., 1990), lead to overly specific annotations. A new sequence 

in a protein family is always “most similar” to something, so it is difficult to 

recognize when the new sequence is the pioneer member of a novel functional 

subfamily. Profile search methods, exemplified by HMMER (Eddy, 2000), lead to 

overly general annotations. They recognize that a new sequence fits a general 

profile of a family, but do not attempt to subclassify the sequence at all. 

Phylogenetic inference is a sensible approach to sub-classifying sequences, 

by grouping them hierarchically into evolutionary clades. The use of phylogenetic 

inference to improve genome sequence annotation has been termed 

“phylogenomics” by Eisen (1998b). A key idea of phylogenomics is to distinguish 

sequences that have diverged by speciation (orthologs) from sequences that have 

diverged by duplication (paralogs). Although orthology does not equate with 

functional conservation, as is sometimes assumed, orthologs often do conserve 

more aspects of a protein’s function than paralogs do. We are working on 

automating a phylogenomic approach to improve Pfam-based annotations. 

During phylogenomic analysis, gene trees are annotated with various data. 

Nodes are annotated as either a gene duplication or a speciation, and subtrees are 
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annotated according to sequence function (as description and/or EC number). In 

addition, information about species (as name and/or taxonomy ID) and sequence 

names, branch lengths, and bootstrap values are likely to be present. We needed 

a tool for visualizing heavily annotated phylogenetic trees. Although a variety of 

excellent tree browsers exist, including DRAWTREE from the PHYLIP package 

(Felsenstein, 2001), TREEVIEW (Page, 1996), NIFAS 

[http://www.cgr.ki.se/Pfam/nifas.html], NJPLOT (Perriere and Gouy, 1996), and 

Phylodendron [http://iubio.bio.indiana.edu/soft/molbio/java/apps/trees/] none 

of them exactly suited our annotation needs. Hence, we developed our own 

design. 
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2.3 Features 

ATV is mouse and menu driven. The user can choose which data elements 

to display on the tree. All the data fields associated with nodes can be edited. The 

tree can be rerooted on any branch. ATV allows visualization of very large trees 

(>500 sequences): the user can display any subtree of the tree, zoom in or out, or 

collapse any subtree into a single node. The applet hyperlinks to SWISS-PROT 

entries for sequences with a SWISS-PROT name. Branches can be colored 

according to likelihood values associated with them. The Swing version (see 

below) of the application allows printing trees in color. Depending on the user’s 

environment, it also allows tree images to be exported as PostScript or PDF files 

(which in turn gives the user the opportunity to employ graphics software to 

manipulate tree images beyond the capabilities of ATV). An example of ATV 

displaying an annotated tree is shown in Figure 2.1. 

Trees can be read and saved in the standard “New Hampshire” format 

(Felsenstein, 2001), but this format is not suitable for storing annotated trees. 

Currently we use a simple extension of the format that we call “New Hampshire 

eXtended” format (NHX). In NHX, additional tag/value pairs are used to 

associate annotation with nodes (e.g. “:E=” is a tag for a EC number, “:S=” is a tag 

for a species name). In the long term, we envision replacing NHX with a 

structured markup language, such as the XML document type definition for the 

description of taxonomic relationships described in Gilmour (2000). 
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Figure 2.1. ATV displaying a phylogenetic tree of biotin-requiring enzymes. 

Red nodes indicate duplications, green numbers represent bootstrap values, orange numbers are 

EC numbers, and the functional description of subtrees is in red. The check boxes in the right side 

panel are used to choose which information is displayed, whereas the radio buttons are used to 

determine the behavior for node clicking. 
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2.4 Implementation 

ATV is coded in Java, for portability reasons. ATV can be used either as an 

applet in a web browser or as a standalone application. ATV should run on any 

platform for which a Java 1.1.x runtime environment is available. It has been 

tested on Red Hat Linux 6.1, SGI IRIX 6.5, Sun Solaris 5.6, and Microsoft 

Windows 95B and Windows NT Workstation 4.0 using various Java runtime 

environments from Sun Microsystems and Silicon Graphics. Two versions of ATV 

exist. One version uses Swing graphics classes, and is less portable but more 

aesthetically pleasing. The other version uses basic AWT (Advanced Windowing 

Toolkit) and is more portable. It is straightforward to incorporate ATV and 

forester into other Java applications. 

ATV is freely available under a BSD open source license. The ATV 

distribution includes all source code files, as well as extensive documentation 

(including a definition of the NHX format). 
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2.6 The New Hampshire X Format (NHX) 

(This section is not present in the original publication text.) 

NHX is based on the New Hampshire (NH) standard (also called "Newick 

tree format") (Felsenstein, 2001). It has the following extensions (compared to 

NH used in the PHYLIP package): 

�� it introduces tags to associate various data fields with a node of a 

phylogenetic tree 

�� both internal and external nodes can be tagged 

�� number of children per node is at least two (allows polytomous trees) 

�� the tree is assumed to be rooted if the deepest node is a bifurcation 

�� the order of the tags does not matter, with the exception that the sequence 

name must be first (if assigned) 

�� the length of all character string based data is unlimited (name, species, 

EC number) 

�� Comments between '[' and ']' are removed (unless the opening bracket is 

followed by "&&NHX") 

 

In order to remain compatible with the NEXUS format (Maddison et al., 

1997), all fields except sequence name and branch length (in other words, all 

fields eXtending NH) must be wrapped by "[&&NHX" and "]". E.g. 

"ADH1:0.11[&&NHX:S=human:E=1.1.1.1]". In contrast to its name, NHX also has 

restrictions compared to Felsenstein's definition of the NH format: "Empty" 
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nodes are not allowed (e.g. "(,(,),)" is not acceptable). The following characters 

cannot be part of names: '(' ')' '[' ']' ',' ':' as well as white spaces. The tags are listed 

in Table 2.1. 

 

TAG VALUE MEANING 

no tag String sequence name of this node (MUST BE FIRST, IF ASSIGNED) 

: double branch length to parent node (MUST BE SECOND, IF ASSIGNED) 

:B= integer bootstrap value at this node (does not apply to external nodes) 

:S= String species name of the species/phylum at this node 

:T= integer NCBI taxonomy ID of the species/phylum at this node 

:E= String EC number at this node 

:D= 'Y' or 'N' ‘Y’ if this node represents a duplication event – ‘N’ if this node represents 

a speciation event (does not apply to ext nodes) 

:O= integer orthologous to this external node 

:SO= integer "super orthologous" (no duplications on paths) to this external node 

:L= float log likelihood value on parent branch 

:Sw= 'Y' or 'N' placing a subtree on the parent branch of this node makes the tree 

significantly worse according to Kishino/Hasegawa test (or similar) 

:Co= 'Y' or 'N' Collapse this node when drawing the tree (default is not to collapse) 

Table 2.1. Tags used in the NHX format. 
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The following is the NHX description of the tree shown in Figure 2.2: 

(((ADH2:0.1[&&NHX:S=human:E=1.1.1.1],ADH1:0.11[&&NHX:S=huma

n:E=1.1.1.1]):0.05[&&NHX:S=Primates:E=1.1.1.1:D=Y:B=100],AD

HY:0.1[&&NHX:S=nematode:E=1.1.1.1],ADHX:0.12[&&NHX:S=insect

:E=1.1.1.1]):0.1[&&NHX:S=Metazoa:E=1.1.1.1:D=N],(ADH4:0.09[

&&NHX:S=yeast:E=1.1.1.1],ADH3:0.13[&&NHX:S=yeast:E=1.1.1.1]

,ADH2:0.12[&&NHX:S=yeast:E=1.1.1.1],ADH1:0.11[&&NHX:S=yeast

:E=1.1.1.1]):0.1[&&NHX:S=Fungi])[&&NHX:E=1.1.1.1:D=N]; 
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Figure 2.2. A sample tree to illustrate the NHX format. 
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3.1 Abstract 

Motivation: When analyzing protein sequences using sequence similarity 

searches, orthologous sequences (that diverged by speciation) are more reliable 

predictors of a new protein’s function than paralogous sequences (that diverged 

by gene duplication), because duplication enables functional diversification. The 

utility of phylogenetic information in high-throughput genome annotation 

(“phylogenomics”) is widely recognized, but existing approaches are either 

manual or indirect (e.g. not based on phylogenetic trees). Our goal is to automate 

phylogenomics using explicit phylogenetic inference. A necessary component is 

an algorithm to infer speciation and duplication events in a given gene tree. 

Results: We give an algorithm to infer speciation and duplication events on a 

gene tree by comparison to a trusted species tree. This algorithm has a worst-case 

running time of O(n2) which is inferior to two previous algorithms that are ~O(n) 

for a gene tree of n sequences. However, our algorithm is extremely simple, and 

its asymptotic worst case behavior is only realized on pathological data sets. We 

show empirically, using 1750 gene trees constructed from the Pfam protein family 

database, that it appears to be a practical (and often superior) algorithm for 

analyzing real gene trees. 

Availability: [http://www.genetics.wustl.edu/eddy/forester] 

Contact: zmasek@genetics.wustl.edu; eddy@genetics.wustl.edu; 
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3.2 Introduction 

Automated sequence function prediction becomes a necessity due to the 

enormous amount of sequence data currently produced by the various genome 

projects. The fact that many proteins belong to large superfamilies that consist of 

subfamilies with different biological functions complicates such efforts. 

Usually, automated sequence function prediction is done using methods 

based on pairwise sequence similarity, such as BLAST (Altschul et al., 1990). 

Annotating a new sequence by transferring annotation from its best BLAST hits 

tends to classify novel sequences too aggressively. Without careful human 

intervention, it is impossible to detect when a new sequence is not as similar to 

known homologues as it should be, and it in fact represents the first member of a 

novel functional subfamily in a larger superfamily – often an extremely 

interesting result. 

In contrast, analyses using profile search algorithms such as HMMER 

(Eddy, 2000) and protein family databases such as Pfam (Bateman et al., 2000) 

and InterPro (Apweiler et al., 2000), classify sequences too conservatively. They 

recognize that a new sequence belongs to a certain family, but do not subclassify 

the sequence. 

Profile algorithms can be used to align the novel sequence to a curated 

alignment of the known family members. A human annotator can use this 

multiple alignment as input for a phylogenetic tree analysis, and from the 

placement of the new sequence in the tree of known sequences can infer a more 

specific function. This approach was called “phylogenomics” by Eisen (1998b). 
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This procedure is different from schemes such as the COG database (Tatusov et 

al., 2001) in that it directly uses phylogenetic trees, whereas COG clusters 

sequences based on evolutionary relationships indirectly inferred from sequence 

similarities. 

It is impossible to automate this process fully, because it is impossible to 

precisely define what “protein function” means. However, a principle of 

phylogenomics is that orthologous sequences (that diverged by speciation) are 

more likely to conserve protein function than paralogous sequences (that 

diverged by gene duplication). Orthology and paralogy are precisely defined and 

can be inferred from gene and species trees. One simple example of a 

phylogenomics approach that is reasonable and automatable could thus be stated 

as follows. If a novel sequence has orthologs, functional annotation can be 

transferred from them (as in best BLAST analysis); if there are no orthologs, the 

sequence is classified as just as a family member (as in Pfam/InterPro analysis) 

and flagged as possibly the first representative of a novel subfamily. Other, more 

sophisticated analyses could be devised. At the core of such approaches stands 

therefore the distinction between orthologs and paralogs, and hence the ability to 

discriminate between duplication and speciation events on a gene tree. 

Algorithms to distinguish between duplications and speciations have been 

employed previously in calculating the dissimilarity between gene trees and 

species trees, and in inferring parsimonious species trees from gene trees by 

minimizing the number of duplications and gene losses that must be invoked to 

reconcile a given gene sequence tree with the inferred species tree (Eulenstein 

and Vingron, 1995; Goodman et al., 1979; Guigo et al., 1996; Mirkin et al., 1995; 
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Page and Charleston, 1997; Zhang, 1997). Brute force algorithms to solve this 

problem can have unfavorable O(n3) running times. Two known algorithms solve 

the problem efficiently with excellent worst-case running times of ~O(n) for a 

gene tree of n sequences (Eulenstein, 1998; Page, 1998; Zhang, 1997) but both 

algorithms are somewhat complex. We describe here a very simple algorithm that 

appears to solve the problem even more efficiently on realistic data sets, though it 

has an asymptotic worst-case running time that is less favorable. 

71 



 

3.3 Algorithm 

A gene tree G and the species tree S of the species harboring the genes of G 

do not necessarily have to exhibit the same topology (Page and Holmes, 1998). 

Gene duplication, gene loss, and horizontal genetic transfer are some of the 

forces causing inconsistencies. Gene duplication can be trivially inferred when a 

species contains two or more homologues belonging to the same gene family (tree 

G1 in Figure 3.1). However, due to gene loss or incomplete sampling of genes in 

partially sequenced genomes, not all duplications are detectable by simple 

redundancy in a gene tree (tree G2 in Figure 3.1). Reliable assignment of nodes in 

the gene tree as either duplication events or speciation events requires 

comparison to the phylogenetic tree of the species (tree S in Figure 3.1). 

72 



 

 

Figure. 3.1. Gene trees and species trees. 

G1 and G2 are gene trees, S is a species tree. Internal tree nodes representing gene duplications are 

labeled as such, other internal nodes represent speciations. The sequence family in tree G1 is 

compromised of three functional subfamilies: �, � and �. The two duplications in G1 can be 

inferred directly from the redundancy of species names. G2 is a tree of the same family as G1. In 

contrast to G1, some sequences are not present in G2, either due to gene loss or incomplete 

sampling. The second duplication in G2 can only be inferred by comparing it to the species tree S 

and recognizing the anomaly of placing the human gene closer to yeast than to nematodes. 

First let us define how we recognize that a node in a gene tree G should be 

assigned as a duplication, given species tree S. We use a mapping function M 

which was first introduced by Goodman et al. (1979) and used elsewhere (Chen et 

al., 2000; Eulenstein et al., 1998; Eulenstein and Vingron, 1995; Guigo et al., 

1996; Mirkin et al., 1995; Page, 1994; Page and Charleston, 1997; Zhang, 1997): 
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Definition 3.1. Let G be the set of nodes in a rooted binary gene tree 

and S the set of nodes in a rooted binary species tree. For any node g � G, 

let �(g) be the set of species in which occur the extant genes descendant 

from g. For any node s � S, let �(s) be the set of species in the external 

nodes descendant from s. For any g � G, let M(g) � S be the smallest 

(lowest) node in S satisfying �(g) � �(M(g)). That is, M(g) points to the 

ancestral species in S that (we infer) harbored ancestral gene g. 

Duplications are then defined using M(g) in Goodman et al. (1979) and 

formally in Guigo et al. (1996) and Page and Charleston (1997) as follows: 

Definition 3.2. Let g1 and g2 be the two child nodes of an internal node 

g of a rooted binary gene tree G. Node g is a duplication if and only if 

M(g) = M(g1) or M(g) = M(g2). 

An example is shown in Figure 3.2. This approach makes a parsimony 

assumption. It postulates the minimal number of duplications necessary to 

reconcile the gene tree with the species tree, and it places those duplications as 

close to the external nodes as possible. It minimizes the number of unobserved 

genes – due to gene loss or incomplete sampling – that need to be invoked. 
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Figure. 3.2. The mapping function M and the definition of a duplication. 

M is symbolized by arrows originating at nodes of the gene tree G and pointing to nodes in the 

species tree S. Letter A to D represent species names. As an example, the mapping for g3 is 

computed as follows. According to definition 3.1, �(g3) = {A,C}, hence M(g3) = s2 since the 

smallest node s � S satisfying �(g) � �(s) is s2 for which �(s2) = {A,B,C}. Each external node of G  

maps to the external node in S that is associated with the same species name. g2 is a duplication 

according to definition 3.2, since it and its child g3 maps to the same node s2. 

Given the mapping function M(g), using definition 3.2 to assign 

duplications requires only a linear time, O(n) traversal of a gene tree G for n 

genes. What about calculating M(g)? To our knowledge, Page was the first to 

implement an algorithm for this problem (Page, 1994), but the description given 

is a brute force approach (for each node g in G, visit each node s in S, compile the 

sets �(g) and �(s), and compare them). This algorithm has a running time of 

O(n3), if the number of species in S is O(n). To speed this up, observe that M(g) 

cannot be lower than M(g1) or M(g2) in S. Furthermore, observe that M(g) must 

in fact be the last common ancestor (LCA) of M(g1) and M(g2). Therefore if we are 

careful to traverse G in the right direction, we can assign M(g) recursively 

without ever having to explicitly compile or compare the lists �(g) and �(s), and 

without having to traverse all of S for each node g. This recursive algorithm goes 

as follows: 
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Input: Rooted binary gene tree G, rooted binary species tree S 

of all species in G. 

Output: G with “duplication” or “speciation” assigned to each of 
its internal nodes. 

 

Initialization 
Number nodes of S in preorder traversal (root = 1, child nodes 

always larger than parent node); 

For each external node g of G, set M(g) to refer to the 

external node in S with the matching species name; 

 

Recursion 
Visit each internal node g of G in postorder traversal (from 

external nodes upwards to root): 

set a = M(g1); [g1 is child 1 of the current node g] 

set b = M(g2); [g2 is child 2 of the current node g] 

while ( a != b ): 

if ( a > b ): 

set a = parent of node a; 

else: 

set b = parent of node b;  

set M(g) = a; 

if ( M(g) == M(g1)) or (M(g) == M(g2) ): 

g is a duplication; 

else: 

g is a speciation. 

 

 

 

A sketch of the running time analysis of this algorithm is as follows. 

Initializing M(g) for the external nodes of G is O(n) if species names are looked 

up in a hash table (Cormen et al., 1990). Initializing the numbering of S is O(n) 

(again assuming that the number of nodes in S scales linearly with the number of 
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nodes in G; S can be smaller than G but not larger). Thus initialization is O(n) 

and will not be the rate determining step. In the recursion, we visit each of the n-1 

internal nodes in G individually, and at each node we find the LCA of M(g1) and 

M(g2) simply by brute force, by climbing the tree from both points until we meet. 

The computational cost of finding LCAs in this manner depends on the topology 

of G and S. In the best case, G has no duplications and the topology of G and S are 

the same; each LCA determination costs O(1), no node in S will be reached more 

than twice in the whole algorithm, and the overall running time is therefore O(n) 

(Figure 3.3 A). In a pathological bad case, if M(g) for all internal nodes in G 

pointed to the root of the species tree (itself a special case of the unusual situation 

in which all parent nodes of all internal nodes are gene duplication events), and 

nonetheless no more than one gene in G is found in each species, each LCA 

determination would require climbing the entire height of tree S, which for a 

balanced binary tree would be log n, giving an overall running time of O(n log n) 

(Figure 3.3 B). Finally, in the pathological worst case, not only would each LCA 

require climbing all of the height of S, but S could also be a maximally 

unbalanced tree (a tree in which each internal node has a least one external child, 

also called a “pectinate” tree) with a height of n, giving an overall running time of 

O(n2) (Figure 3.3 C). The space complexity of the algorithm is O(n), since only the 

two trees and a constant number of auxiliary variables need to be stored. 
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Figure. 3.3. The number of duplications and the topology of the species tree 

influence the time complexity of our algorithm. 

G1 to G3 are gene trees, S1 and S2 are species trees. M is symbolized by arrows originating at nodes 

of the gene tree and pointing to nodes in the species tree. Letter A to D represent species names. 

Circled nodes are duplications. Arrows inside the species trees symbolize the movement of 

variables a and b (see text). 

Algorithms with more efficient asymptotic bounds on running time have 

been published. The closest to ours are those of Zhang (1997) and Chen et al. 
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(2000). Both observe that LCA calculations can be done in O(1) time, for instance 

using the LCA algorithms described by Schieber and Vishkin (1988) or by JáJá 

(1991). The trick is that the LCA of any two nodes on a complete binary tree can 

be calculated by direct arithmetic. The tree S (which in general is not a complete 

binary tree) is therefore preprocessed in such as way that the nodes of S are 

associated with nodes in a complete binary tree; this preprocessing takes O(n) 

time. A quite different algorithm, developed by Eulenstein (1998), calculates M in 

O(n	(n,n)) time, where 	(n,n) is the very slowly growing inverse of Ackermann’s 

function (Cormen et al., 1990). This algorithm visits each node of the species tree 

S and in the process calculates M for each internal node of the gene tree, using a 

data structure similar to a disjoint-set forest (Cormen et al., 1990). 

Both kinds of algorithm, though asymptotically more efficient than ours, 

require relatively complex preprocessing. We reasoned that since our algorithm 

has so few steps, we were likely to have a better constant factor than both. 

Furthermore, our intuition was that the worst case bounds of our algorithm were 

pathological and would never be realized on realistic data sets. Eulenstein 

comments that his algorithm has a lower constant factor than Zhang’s. We 

decided to implement both our algorithm and Eulenstein’s, and compare their 

performance on real data. 
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3.4 Implementation 

Both algorithms were implemented in Java. The Java classes are named 

SDI for “Speciation vs. Duplication Inference” and are part of our FORESTER 

classes for working with phylogenetic trees. FORESTER including SDI is freely 

available at http://www.genetics.wustl.edu/eddy/forester/. It should run on 

every platform with a Java 1.2 JDK. 

A preprocessing step deletes external nodes in S that have no genes in G, 

allowing a single trusted species tree to be used for all gene trees.  

All timings reported are the average of three runs on a single processor 

500 Mhz Pentium III system running Red Hat Linux 6.0 and Sun Microsystems’ 

Java 1.2 SDK for Linux. 
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3.5 Results 

We first timed the two implementations on synthetic data sets that would 

exercise the worst-case behavior of our algorithm. We synthesized gene trees with 

n genes, for a range of values of n, where M(g) for every internal node would map 

to the root of the corresponding species tree with n species (e.g. the situations in 

Figure 3.3B and 3.3C). Plots of wall clock time versus n are shown in Figure 3.4. 

For a balanced species tree, both algorithms have running times that scale nearly 

linearly in tree size (our O(n log n) is not appreciably different from linear at first 

glance), and our algorithm exhibits a lower constant than our implementation of 

the Eulenstein algorithm. For a maximally unbalanced species tree, we confirm 

our algorithm’s worst case O(n2) behavior, but because of our lower overhead, SDI 

is still more efficient for smaller trees. Over about n=550 genes and species, our 

implementation of Eulenstein’s algorithm outperforms SDI. If only the actual 

calculation of M(g) is compared (excluding all preprocessing and initialization 

steps), Eulenstein’s algorithm outperforms SDI for n larger than about 200 taxa 

(data not shown). 

We then tested both implementations on real data to empirically 

determine their average-case behavior. We obtained 2478 multiple sequence 

alignments from the “full” alignments (as opposed to the smaller “seed” 

alignments) in the protein family database Pfam (release 5.5) (Bateman et al., 

2000). 

Gene trees were constructed from these alignments as follows. All 

sequences not originating from the curated SWISS-PROT database (Bairoch and 
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Apweiler, 2000) and not from species in our species tree (see below) were 

removed from the alignments. Alignments with fewer than four or more than 

1000 sequences were discarded, leaving 1750 alignments. Columns containing 

one or more gap symbols were removed from the alignment if the resulting 

alignment after this filtering was at least 100 amino acids in length. Pairwise 

distances were calculated based on the Dayhoff PAM matrix (Dayhoff et al., 1978) 

using the program PROTDIST from Felsenstein’s PHYLIP package (Felsenstein, 

1993). A neighbor-joining tree (Saitou and Nei, 1987) was constructed using the 

program NEIGHBOR from the PHYLIP package. Roots were placed by the 

midpoint rooting method (Swofford et al., 1996). 

A single master species tree was compiled manually, containing 200 of the 

most commonly encountered species in Pfam. The topology of this species tree is 

based on the taxonomy database at NCBI 

[http://www.ncbi.nlm.nih.gov/Taxonomy/tax.html/], the Tree of Life project 

(Maddison and Maddison, at 

[http://phylogeny.arizona.edu/tree/phylogeny.html]), Barns et al. (1996), and 

Aguinaldo et al. (1997). This tree is available at 

[http://www.genetics.wustl.edu/eddy/forester/]. 

The individual running times of the SDI algorithm and of the Eulenstein 

algorithm for each of these 1750 trees are shown in Figure 3.4. These data imply 

that the average case behavior of our algorithm on real data sets is approximately 

O(n), and its worst case behavior is not realized. 
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Figure. 3.4. Timing benchmarks on real trees to determine average-case 

behavior, and synthetic trees that exercise our algorithm’s worst case 

behavior. 

For the synthetic trees, every internal node of the gene tree maps to the root of the corresponding 

species tree and each gene tree has the same size as the corresponding species tree. Each synthetic 

data point is the average of three measurements. Curves were fitted using GNUPLOT’s nonlinear 

least squares fitting mechanism (Marquardt-Levenberg algorithm). Real trees are from Pfam 

alignments and were created as described in the text. In the case of real trees, the species trees 

usually have fewer taxa than gene trees (each species may contain more than one paralogous 

gene) – hence the smaller times relative to synthetic data tests. Each Pfam data point is the 

average of 100 measurements. 
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As an example of the results from such an analysis, and how they might be 

useful in sequence annotation, the gene tree for the fibrinogen beta and gamma 

chain Pfam family (Pfam accession number: PF00147) is presented in Figure 3.5. 

The fibrinogen sequence family contains fibrinogen alpha, beta and gamma 

chains (sequences with FIBA, FIBB, FIBG prefixes) which together form the 

fibrinogen hexamer (Stryer, 1995). Each chain type appears on the tree as a 

paralogous subtree. A special case is FIBH_HUMAN (fibrinogen gamma-B 

chain) which appears to be the result of alternative splicing of the human gamma 

chain gene (Fornace et al., 1984) In addition, the fibrinogen family also contains 

various proteins probably involved in adhesion, which share the fibrinogen-like 

domain with the fibrinogen sequences (Baker et al., 1990; Jones et al., 1988) such 

as tenascins (sequences with TENA prefixes). Interestingly – FIBX_MOUSE (also 

named FGL2_MOUSE), a mouse enzyme with prothrombinase activity 

(conversion of prothrombin into thrombin) is similar to fibrinogen beta and 

gamma chains (Parr et al., 1995). Thrombin is an enzyme responsible for cleaving 

fibrinogen into monomers which in turn polymerize into fibrin (Stryer, 1995). 

The node connecting FIBX_MOUSE to the rest of the tree is inferred to be a 

duplication event, since the placement of FIBX_MOUSE contradicts the species 

tree and hence FIBX_MOUSE is inferred to be paralogous to the fibrinogen beta 

chain subfamily (FIBB). In contrast, a naïve best BLAST analysis of the 

FIBX_MOUSE sequence could easily have misannotated it as the mouse 

fibrinogen beta chain. 
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Figure. 3.5. A gene tree for the fibrinogen beta and gamma chain Pfam 

family. 

Circled internal nodes represent gene duplication events inferred by SDI. The suffix of each 

SWISS-PROT sequence name indicates the species (BOVIN, Bos taurus; CHICK, Gallus gallus; 

DROME, Drosophila melanogaster; HUMAN, Homo sapiens; PIG, Sus scrofa; RAT, Rattus 

norvegicus; XENLA, Xenopus laevis). Bootstrap values were calculated from 100 replicates and 

are shown as numbers below the corresponding branch. The tree was rooted by the midpoint 

rooting method. The figure was produced with our tree display tool ATV (Zmasek and Eddy, 

2001a). 

85 



 

3.6 Discussion 

In this paper we have presented a simple algorithm to infer gene 

duplication events on a gene tree by comparing it to a species tree. 

Computer science textbooks often warn that comparison of asymptotic 

worst-case running times may be misleading. Our algorithm is O(n2), yet 

empirically outperforms at least one more complex algorithm with a superior 

asymptotic bound close to O(n) (Eulenstein, 1998), at least in our 

implementation of the two algorithms. Partly this is because our algorithm has 

very few steps, so it has a low constant. Also, the worst case behavior of our 

algorithm is only realized in a pathological case: a gene tree where M(g) for every 

internal node points to the root of the species tree, and there are no two genes 

from the same species (e.g. the number of species in S is O(n)), and the species 

tree is maximally unbalanced. Figure 3.4 argues that we do not see such cases in 

real data. In real data our algorithm is nearly linear time. The Zhang (1997) O(n) 

algorithm has not been analyzed in this work, but we expect that there too, the 

improved asymptotic bound will not be worth the cost of the extra complexity nor 

the extra computational overhead. We conclude from our results that we will use 

SDI for future work. 

Our goal is to use SDI as part of a system for automating phylogenomics 

(Eisen, 1998b). SDI gives us a clean, simple computational engine that can 

become part of that larger goal, but there are additional difficulties that must be 

faced before we put it to practical use. Most importantly, the algorithm assumes 
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at its peril that the gene tree and species tree are both properly rooted and 

biologically correct. 

Phylogenetic inference algorithms produce unrooted gene trees that will 

have to be rooted before duplication inference can be performed. Usually trees 

are rooted using either a molecular clock assumption or by defining an outgroup. 

A molecular clock assumption is generally dubious, and will be especially dubious 

in a sequence family with different paralogous clades with different functions that 

are under differing selective pressures. Defining an outgroup in a complicated 

family of paralogous sequences depends on recognizing the paralogies in the first 

place, so cannot be done independently of duplication inference. Ironically, one 

plausible approach to root the gene trees might be to minimize the dissimilarity 

between the gene tree and a species tree described in Eulenstein and Vingron 

(1995), Goodman et al. (1979), Guigo et al. (1996), Mirkin et al. (1995), and Zhang 

(1997), using a duplication inference algorithm. 

Phylogenetic inference algorithms also rarely produce completely reliable 

gene trees. Even a consensus species tree based on all available evidence (from 

paleontological to molecular) will always have ambiguities. Errors in either tree 

will produce spurious inferred duplications. This is obviously problematic if 

duplications are to be used as indicators of potential functional changes. One way 

to portray uncertainty in phylogenetic trees is lack of resolution (i.e. 

multifurcations). However, the current algorithms are limited to completely 

resolved (i.e. completely binary) gene and species trees. In addition, the concept 

of orthology and paralogy is applicable only to completely resolved gene trees. 

Instead, we think we can approach this issue using sampling methods, such as 

87 



 

bootstrap (Felsenstein, 1985; Mueller and Ayala, 1982) or Markov chain Monte 

Carlo (Mau et al., 1996), to integrate orthology assignments over tree space. This 

would allow us to calculate a probability, or at least a bootstrap confidence value, 

for a particular assertion that a known sequence is orthologous to the new 

sequence being analyzed, and to rank the inferred orthologs by this confidence. 

Sampling methods can also help us with dealing with ambiguities in rooting the 

trees. Having a fast algorithm for duplication inference ought to help in any 

sampling procedure that explores large numbers of tree topologies. However, we 

recognize that the rate limiting step is more likely to be the tree sampling 

procedure itself, rather than the duplication inference procedure. 

88 



 

3.7 Acknowledgements 

This work was supported primarily by a grant from Monsanto Company, 

and also by the Howard Hughes Medical Institute and grant HG01363 from the 

NIH National Human Genome Research Institute. 

89 



 

4  RIO: Analyzing proteomes by 

automated phylogenomics using 

resampled inference of orthologs 

 

Christian M. Zmasek and Sean R. Eddy 

 

To be submitted for publication in BMC Bioinformatics. 

 

90 



 

4.1 Abstract 

Background: When analyzing protein sequences using sequence 

similarity searches, orthologous sequences (diverged by speciation) are more 

reliable predictors of a new protein’s function than paralogous sequences 

(diverged by gene duplication), because duplication enables functional 

diversification. The utility of phylogenetic information in high-throughput 

genome annotation (“phylogenomics”) is widely recognized, but existing 

approaches are either manual or indirect (e.g. not based on phylogenetic trees). 

Results: Here we present RIO (Resampled Inference of Orthologs), a 

procedure for automated phylogenomics using explicit phylogenetic inference. A 

major caveat of all phylogenetic analyses is the unreliability of the resulting trees. 

Therefore, all RIO analyzes are performed over bootstrap resampled phylogenetic 

trees to estimate the reliability of the assignments. We also introduce 

supplementary concepts which might be helpful for functional inference. RIO has 

been implemented as Perl pipeline of a variety of C and Java computer programs. 

It is available at [http://www.genetics.wustl.edu/eddy/forester/]. A web server 

allowing to perform RIO analyzes has been set up at [http://www.rio.wustl.edu/]. 

RIO was tested on the Arabidopsis thaliana and Caenorhabditis elegans 

proteomes. 

Conclusion: The RIO procedure is particularly useful for the automated 

detection of first representatives of novel protein subfamilies. We also describe 

how certain types of orthologs might be misleading for functional inference. 
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4.2 Introduction 

Accurate computational protein function analysis is an important means 

to extract value from the growing amount of primary sequence data. Due to the 

large amount of data, automated systems seem unavoidable (at least for initial, 

prioritizing steps). Such efforts are complicated, for a variety of reasons. The 

focus of this work is problems stemming from the fact that many proteins belong 

to large families, as suggested by Dayhoff (1976). Such families are oftentimes 

composed of subfamilies related to each other by gene duplication events. For 

example, it was shown by Ingram (1961) that human 	, 
, and � chains of 

hemoglobins are related to each other by gene duplications. Gene duplication 

allows one copy to assume a new biological role through mutation, while the 

other copy prevents the loss of the original functionality (Haldane, 1932; Ohno, 

1970). Hence, subfamilies oftentimes differ in their biological functionality yet 

still exhibit a high degree of sequence similarity amongst each other (for the 

human 	, 
, and � hemoglobin chains the sequence similarity at the amino acid 

level is between 41 and 73 percent). 

Other complications in functional analysis include: ignoring the multi-

domain organization of proteins; error propagation caused by transfer of 

information from previously erroneously annotated sequences; insufficient 

masking of low complexity regions; and alternative splicing [for a detailed 

discussion see (Galperin and Koonin, 1998)]. 
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Typically, automated sequence function analysis is accomplished using 

methods based on pairwise sequence similarity [such as BLAST (Altschul et al., 

1990) or FASTA (Pearson, 1990)]. Annotating a sequence by transferring 

annotation from its most similar sequence(s) tends to classify too aggressively 

(overly detailed annotation). 

In contrast, analyses using profile search algorithms such as HMMER 

(Eddy, 2000) together with a protein family database such as Pfam (Bateman et 

al., 2000), classify sequences too conservatively (under annotation). They 

recognize that a query sequence belongs to a certain family (or, to be more 

precise, indicate which domain(s) the query is likely to contain), but do not 

subclassify the sequence. Such methods are effective at dealing the multi-domain 

organization of proteins. 

Erroneous predictions caused by protein families consisting of subfamilies 

with different biological roles can often be avoided by taking into account the 

evolutionary history of sequences, as illustrated in Figures 4.1 and 4.2. Profile 

search algorithms can be used to align the query sequence to a curated alignment 

of the known family members. A human annotator can use this multiple 

alignment as input for a phylogenetic tree analysis, and from the placement of the 

new sequence in the gene tree of known sequences can infer a more specific 

function. This approach was called “phylogenomics” by Eisen (Eisen, 1998b). 

This procedure is different from schemes such as the COG database (Tatusov et 

al., 2001) in that it directly uses phylogenetic trees, whereas COG clusters 

sequences based on evolutionary relationships indirectly inferred from sequence 

similarities. 
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In particular, the following two scenarios can cause misleading predictions 

when using sequence similarity alone for annotation: (i) gene loss and/or 

incomplete sequence databases to run the similarity search against (incomplete 

sequence databases: not containing at least one representative for each 

subfamily) (Figure 4.1), and (ii) unequal rates of evolution (Figure 4.2). When 

dealing with a first (or only) representative of a novel subfamily we always have a 

situation where the database is incomplete (since by definition it does not contain 

other examples of the novel subfamiliy). Thus, similarity based methods alone 

cannot tell whether a sequence is a first (or only) representative of a novel 

subfamily and therefore does not belong into any currently known subfamily (e.g. 

“orphan” G-protein coupled receptors) since every sequence is most similar to 

some other sequence. In contrast, when constructing a phylogenetic tree, this fact 

is easy to observe (as illustrated in Figure 4.1). 
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Figure 4.1. Over annotation due to database bias or gene loss under equal 

rates of evolution. 

Species harboring the sequences are indicated. Two cases are depicted. In A, the query sequence 

belongs to the “Y” subfamily which can be correctly inferred by both sequence similarity and 

phylogenetic tree based methods (in situation A, the query is most similar to “Y” of rat and 

mouse). In short, in situation A, orthology and “most similar” do (partially) overlap. In B, a 

situation is depicted where the query is actually a member of a third subfamily “X” but this can 

only be inferred by considering the evolutionary history of this sequence family. Sequence 

similarity based methods would misleadingly indicate that this query belongs to “Y” since it is 

most similar to “Y” in rat, mouse and wheat. In short, in situation B, orthology and “most similar” 

do not correspond. Observe that if there would have been already members of “X” in the database 

(no gene loss and complete sampling) the query in B could have been correctly determined to 

belong to a “X” subfamily (under equal rates of evolution). 
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Figure 4.2. Over annotation due to unequal rates of evolution. 

Sequence similarity based methods would indicate that the query is a member of the “Z” 

subfamily. Phylogenetic tree based methods correctly identify it as a member of subfamily “Y”. 

It is infeasible to completely automate functional analysis, because it is 

impossible to precisely define what protein “function” means. However, a 

principle of phylogenomics is that orthologous sequences (that diverged by 

speciation) are more likely to conserve protein function than paralogous 

sequences (that diverged by gene duplication). Orthology and paralogy are well 

defined and can be inferred from gene and species trees. One simple example of a 

phylogenomics approach that is automatable could thus be stated as follows. If a 

novel sequence has orthologs, functional annotation can be transferred from 

them (as in best BLAST analysis); if there are no orthologs, the sequence is 

classified as just a family member (as in Pfam/InterPro analysis) and flagged as 

possibly the first representative of a novel subfamily. At the core of such 

approaches stands therefore the distinction between orthologs and paralogs, and 
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hence the ability to discriminate between duplication and speciation events on a 

gene tree. Various efficient algorithms to infer gene duplications on a gene tree by 

comparing it to a species have been described [for example: by Eulenstein 

(Eulenstein, 1998), and by Zhang (Zhang, 1997)]. We developed a simple 

algorithm (named SDI for Speciation Duplication Inference) that appears to solve 

this problem even more efficiently on realistic data sets, though it has an 

asymptotic worst-case running time that is less favorable (Zmasek and Eddy, 

2001b). 

In practice, most gene trees tend to be unreliable. Errors in trees will 

produce spurious inferred duplications. This is obviously problematic if 

duplications are to be used as indicators of potential functional changes. 

Therefore, instead of determining the orthologs of a query sequence on just one 

gene tree, inference might be performed over bootstrap resampled gene trees 

(Felsenstein, 1985; Mueller and Ayala, 1982). This gives a bootstrap estimate of 

the reliability of the assignments. Here we describe and test a procedure – RIO 

(for Resampled Inference of Orthologs) – which allows to perform such analyses 

in an automated fashion. [A similar procedure named “orthostrapper” has been 

proposed by Storm and Sonnhammer (personal communication). In contrast to 

the RIO approach, “orthostrapper” does not employ a species tree for duplication 

inference. It works by pairwise comparison of two species or two groups of 

species. Therefore it is suitable for finding orthologs in a given species or group of 

species but it cannot be used to detect orthologs from any species.] 

The design goals for the RIO system were as follows: (i) Given the input of 

a query sequence and a sequence alignment, the output should consist of a list of 
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orthologs, ordered according to a confidence value and useable in a 

bioinformatics pipeline. (ii) The response time should be fast enough, so that RIO 

can be used as a web server, and allow the analysis of whole genomes in a 

reasonable time. 

In addition, we present results from analyzing a plant [A. thaliana 

(Arabidopsis-Initiative, 2000)] and a animal [the nematode C. elegans 

(C.elegans-Sequencing-Consortium, 1998)] proteome.  
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4.3 Algorithm 

4.3.1 Definitions 

Orthologs are defined as two  molecular sequences which diverged by a 

speciation event (their last common ancestor on a phylogenetic tree corresponds 

to a speciation event). Paralogs are defined as two sequences which diverged by a 

duplication event (their last common ancestor corresponds to a duplication) 

(Fitch, 1970). In addition to orthology, other concepts derived from gene trees 

can be used as means for functional prediction. In the following we introduce and 

justify three such concepts (“super-orthologs”, “ultra-paralogs”, and “subtree-

neighbors”): 

Even though orthologs are theorized to be good sources to transfer 

functional annotation from, their indiscriminate use for this purpose can leave to 

incorrect annotations as well. In particular, situations like the one described for 

the A. thaliana O-methyltransferase F16P17_38 later in this work pose potential 

pitfalls. In the simple example shown in Figure 4.3A, the human query sequence 

has two orthologous sequences in wheat. These two wheat sequences are related 

to each other by a gene duplication and one (or, less likely, both) of them might 

have undergone functional modification after their divergence. Such situations 

might be revealed by the only partial (or complete absence of) consensus among 

the annotations of the two orthologs (assuming we are given a list of orthologs as 

opposed to the gene tree). If one ortholog has to be chosen to transfer annotation 
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from, the best guess is to choose the one with the smallest evolutionary distance 

to the query. The situation in Figure 4.3B is trickier, since in this case only one 

ortholog is present and the condition is not be exposed by only partial consensus 

among orthologs. While we do not attempt to solve this problem (a possible 

solution is careful manual analysis of the gene tree combined with all other 

possible sources of information) we intend to at least give the user a warning that 

this situation might be present. For this purpose we introduce the concept of 

“super-orthologs”: 

Definition 4.1. Given a completely binary and rooted gene tree with 

duplication or speciation assigned to each of its internal nodes, two 

sequences are defined super-orthologous toward each other if and only if 

each internal node on their connecting path represents a speciation 

event. 

Hence, the query sequences in Figure 4.3 have no super-orthologs. In 

contrast, the rat, mouse, and wheat sequences in Figure 4.1A are super-

orthologous towards the human query sequence. By definition, the super-

orthologs of a given sequence are a subset of its orthologs. 
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Figure 4.3. The purpose of super-orthologs. 

Examples of how inferring the biological role of a query sequence by simply transferring 

functional annotation from a orthologous sequence might lead to inaccuracies. These potential 

pitfalls lead us to introduce the concept of super-orthologs (Definition 4.1). 

Certain sequences underwent multiple duplications relatively recently 

resulting in large and species specific sequence families. Examples for such 

families are the C. elegans seven-transmembrane proteins acting as odorant and 

chemosensory receptors (Mombaerts, 1999; Troemel, 1999). For query sequences 

belonging to such sequence families, orthologs (if present) are less effective for 

predicting specific information. In these cases, paralogs of the same (sub) family 

might be more informative for functional prediction (as long as the duplications 

indeed happened “late” in evolutionary times). To formalize this, we introduce 

the concept of “ultra-paralogs”: 
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Definition 4.2. Given a completely binary and rooted gene tree with 

duplication or speciation assigned to each of its internal nodes, two 

sequences are defined ultra-paralogous towards each other if and only if 

the smallest subtree containing them both contains only internal nodes 

representing duplications. 

Figure 4.4 illustrates the concept of ultra-paralogs. It follows from 

definition 4.2 that two sequences which are ultra-paralogous towards each other 

must occur in the same species and are connected by a path consisting solely of 

duplication events (being connected by a path of only duplication and being in 

the same species are necessary conditions for ultra-paralogy, but not sufficient 

ones). 
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Figure 4.4. An example of ultra-paralogous sequences. 

 

Oftentimes, researchers construct a gene tree and then rather informally 

use “subtrees” to make inferences about sequences (without regard to 

duplications and speciations). We introduce this concept into our procedure as 

well, formalized as “subtree-neighbors” (illustrated in Figure 4.5): 

Definition 4.3. Given a completely binary and rooted gene tree, the k-

subtree-neighbors of a sequence q are defined as all sequences derived 

from the k-level parent node of q, except q itself (the level of q itself is 0, 

q’s parent is 1, and so forth). The default value of k is 2. 

In general, subtree-neighbors are a less strict criterion than orthologs. 

They can be useful if there is (partial) consensus among them (for example: if the 
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subtree-neighbors of a query are NAD+-dependent isocitrate dehydrogenase and 

NADP+-dependent isocitrate dehydrogenase we can conclude that the query is 

likely to be a isocitrate dehydrogenase, but it is not possible to determine whether 

it is dependent on NAD+ or NADP+). If the subtree-neighbors lack any kind of 

consensus a useful inference is not possible [see (Eisen, 1998b) for a more 

detailed discussion]. Furthermore, orthologs which are not also subtree-

neighbors might be misleading (for a more detailed discussion of this see below, 

and see Figures 4.10 and 4.11 for examples). 

 

 

Figure 4.5. An illustration of subtree-neighbors. 

The dotted subtrees could either be just one external node or a subtree of arbitrary size and 

topology. Species information is of no consequence for the concept of subtree-neighbors. The 

subtree-neighbors depicted here are for the default of k=2. 
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4.3.2 The RIO procedure 

This part portrays the basic RIO procedure. For a simple example with 

only four bootstrap resamples, see Figure 4.6. 

The method described here utilizes the Pfam protein family database 

(Bateman et al., 2000) as a source of high quality curated sequence alignments 

and profile HMMs [Hidden Markov Models, see (Eddy, 1996) for a review], as 

well as programs from the HMMER package (Eddy, 2000). The procedure can 

easily be adapted to work with different sources of alignments and different 

alignment programs. For tree reconstruction, the neighbor joining (NJ) 

algorithm (Saitou and Nei, 1987) is used, since it is reasonably fast and does not 

assume a molecular clock. It recreates the correct additive tree as long as the 

input distances are additive (Studier and Keppler, 1988), and is effective even if 

additivity is only approximated (Atteson, 1997). This is essential, since we try to 

avoid erroneous annotations caused by the absence of a molecular clock (see 

Figure 4.2). 

 

Input: A query protein sequence Q with unknown function. 

A curated multiple alignment A from the Pfam database for the 

protein family to which Q belongs to (as determined by hmmpfam 

from the HMMER package). 

A profile HMM H for the protein family to which Q belongs to. 
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Output: A list (as in Figure 4.7) of proteins orthologous to Q, sorted 

according to a bootstrap confidence value (based on orthology, 

super-orthology, or subtree-neighborings). 

 Optional: A gene tree based on the multiple alignment A and the 

query Q annotated with orthology bootstrap confidence values for 

the query Q. 

 

Procedure: 

1. Query sequence Q is aligned to the existing alignment A (using hmmalign 

from the HMMER package and the Pfam profile HMM H). 

2. The alignment is bootstrap resampled x times (usually, x = 100). 

3. Pairwise distances are calculated for each of the x alignments using a model 

of amino acid substitution [for example, BLOSUM (Henikoff and Henikoff, 

1992) or Dayhoff PAM (Dayhoff et al., 1978)]. 

4. A phylogenetic tree is inferred for each of the x sequence alignments [by 

Neighbor joining (Saitou and Nei, 1987)]. This results in x gene trees.  

5. For each of the x gene trees: For each node it is inferred whether it 

represents a duplication or a speciation event by comparing the gene tree to 

a trusted species tree. Note: Neighbor joining produces unrooted trees, yet 

speciations and duplications are only meaningful on a rooted tree. 

Therefore, a modified version of out SDI algorithm (Zmasek and Eddy, 

2001b) is employed. This algorithm infers gene duplications and at the same 

time roots the tree by minimizing the sum of duplications. For a more 

detailed description, see below. 
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6. For each sequence s in the gene tree (except Q): Count the number of gene 

trees where s is orthologous to Q (see Figure 4.6 for an illustration of steps 5. 

and 6.). 

7. Additionally, unusually long or short branch lengths on the gene tree (either 

a consensus tree with maximum likelihood branch lengths or a tree based on 

the original alignment including Q) are used as an indicator of highly 

unequal rates of evolution which might warrant special consideration. This 

gene tree is also a optional part of the output. 
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Figure 4.6. A simple example of the RIO procedure. 

Four bootstrap resampled gene trees are shown. Letters represent sequence names/”functions”. 

“A” (nematode and wheat) are true orthologs of the human query sequence, whereas “B” (rat) is a 

true paralog of the query (i.e. the first tree happens to be the real one). In 3 out of 4 trees 

nematode “A” appears orthologous to the query, in 3 out of 4 trees wheat “A” appears orthologous 

to the query. Rat “B” never appears to be orthologous. For an example of actual RIO output see 

Figure 4.7. 
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Even though the RIO algorithm as described above only calculates values 

based on orthologies, values for super-orthologies, ultra-paralogies and subtree-

neighbors can be calculated in exactly the same manner (it only requires to 

replace “orthologous” in step 6. with “super-orthologous”, “super-paralogous”, or 

“subtree-neighboring”). 

4.3.3 Precalculation of pairwise distances for 

increased time efficiency 

The most time consuming step in the procedure described above is the 

calculation of the pairwise distances. [The time complexity is O(N2), N being the 

number of sequences. On an average Intel processor the wall clock time for 100 

bootstrapped datasets is in the range of hours for N in the range of hundreds.] 

Since the query sequence is aligned to stable Pfam alignments it is possible 

to precalculate the pairwise distances for each alignment and store the results. 

Then, when RIO is being used to analyze a query sequence, only the distances of 

the query to each sequence in the Pfam alignment have to be calculated. This step 

becomes thus O(N) instead of O(N2) (and what was hours before is reduced to 

minutes). 

The crucial part is that the query sequence has to be bootstrap resampled 

in exactly the same way as has been used for precalculating the pairwise distances 

of the Pfam alignment. For this purpose, the bootstrap positions are saved to a 

file while precalculating the pairwise distances. With this file it is possible to 
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bootstrap both the Pfam alignment and the query sequence in precisely the same 

manner. 

A technical note: The HMMER program hmmalign (used in the RIO 

procedure) does not necessarily keep the non-match columns of a input 

alignment unchanged. Yet, RIO utilizing precalculated distances is critically 

dependent on completely fixed alignments. Therefore, the precalculation of 

pairwise distances also includes the creation of specific profile HMMs which 

together with the appropriate steps in the RIO procedure itself (“--mapali” option 

for hmmalign, removal of non-match columns after the alignment of the query 

sequence) result in completely fixed alignments. For a description of this 

precalculations in the form of an algorithm see Appendix A. 

4.3.4 Rooting of gene trees 

The concept of speciation and duplication is only meaningful on rooted 

gene trees. Yet neighbor joining produces unrooted trees. For the purpose of this 

work we decided based both on empirical grounds as well as on theoretical ones, 

that the following parsimony criterion for rooting is probably adequate: Gene 

trees are rooted on each branch, resulting in 2N-3 differently rooted trees for a 

gene tree of N sequences. For each of these trees the sum of duplications is 

determined. From the trees with a minimal number of duplications (if there is 

more than one) the tree with the shortest total height is chosen as the “correctly 

rooted one”. Empirical studies on gene trees based on 1750 Pfam alignments 

show that about 60% of trees rooted in such a way have their root in the same 
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position as direct midpoint rooting (Swofford et al., 1996) would place it (results 

not shown). 

Even though some algorithms used for duplication inference run in 

(approximately) linear time (Eulenstein, 1998; Zhang, 1997; Zmasek and Eddy, 

2001b), naively performing a full duplication/speciation analysis on each of 2N-3 

differently rooted trees results in a overall time complexity of approximately 

O(N2). Fortunately, this can be avoided. 

For the purpose of the following discussion it is assumed that SDI, our 

algorithm for speciation duplication inference, is employed. But it applies to all 

algorithms which calculate a mapping function M. M has been defined as follows 

(Goodman et al., 1979): 

Definition 4.4. Let G be the set of nodes in a rooted binary gene tree 

and S the set of nodes in a rooted binary species tree. For any node g � G, 

let �(g) be the set of species in which occur the extant genes descendant 

from g. For any node s � S, let �(s) be the set of species in the external 

nodes descendant from s. For any g � G, let M(g) � S be the smallest 

(lowest) node in S satisfying �(g) � �(M(g)). 

Duplications are then defined using M(g) as follows: 
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Definition 4.5. Let g1 and g2 be the two child nodes of an internal node 

g of a rooted binary gene tree G. Node g is a duplication if and only if 

M(g) = M(g1) or M(g) = M(g2). 

The main task of most algorithms for duplication inference is the 

calculation of M. After M has been calculated for a randomly rooted gene tree G it 

is possible to explore different root placements without having to recalculate M 

for each node of G. As long as the root is moved one node at the time, M has to be 

recalculated only for two nodes: the one node which was child 1 (if the new root is 

placed on a branch originating from child 1 of the previous root) or child 2 

(otherwise) of the previous root, as well as for the new root itself. Hence, two 

postorder traversal steps (child 1 or 2 of the old root, then the new root) in the 

SDI algorithm are all that is needed. The new sum of duplications is simply 

determined by keeping track of the change in duplication/speciation status in the 

two recalculated nodes as well as in the previous root. 

Performing this over the whole gene tree (some nodes will be visited twice) 

it is possible to explore all possible root placements and calculate the resulting 

duplications in practically linear time. See Appendix B for a description of this in 

the form of an algorithm. 

4.3.5 Master species tree 

Duplication inference on a gene tree requires a species tree to compare the 

gene tree to. For this purpose, a single completely binary master species tree was 
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compiled manually, containing 249 of the most commonly encountered species in 

Pfam (spanning Archaea, Bacteria, and Eukaryotes). This tree is based mainly on 

information from Maddison’s “Tree of Life” project 

[http://phylogeny.arizona.edu/tree/phylogeny.html], NCBI’s taxonomy database 

[http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/], the “Deep 

Green” project [http://ucjeps.berkeley.edu/bryolab/greenplantpage.html], and 

(Aguinaldo et al., 1997; Barns et al., 1996; de Rosa et al., 1999; Morris, 1998). 

This master tree groups nematodes and arthropods into a clade of ecdysozoans 

(molting animals) as first proposed by Aguinaldo (Aguinaldo et al., 1997), a 

classification which is still controversial. The tree is available in NHX format 

(Zmasek and Eddy, 2001a) at 

[http://www.genetics.wustl.edu/eddy/forester/tree_of_life_bin_1-4.nhx] 
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4.4  Implementation 

RIO is implemented in the form of the following perl pipeline: Alignment 

of the query sequence is accomplished by programs from the HMMER package 

(Eddy, 2000). Bootstrapping is performed by a specifically designed C program. 

Pairwise distances are calculated by a modified version of TREE-PUZZLE 

(Strimmer and von Haeseler, 1996). Neighbor joining trees are calculated by a 

modified version of NEIGHBOR from the PHYLIP package (Felsenstein, 2001). 

Rooting and duplication inference are accomplished by “SDIunrooted” – a Java 

implementation of our SDI algorithm which incorporates various methods for 

rooting (see Appendix A). The actual counting of orthologs is performed by 

methods of the Java class “RIO”. 

These programs, with the exception of HMMER, are part of the 

FORESTER package and are available under the GNU GPL license at 

[http://www.genetics.wustl.edu/eddy/forester/]. 

In order to run RIO locally, the following packages and databases need to 

be present: HMMER (Eddy, 2000), the Pfam database (Bateman et al., 2000), 

the SWISS-PROT and TrEMBL databases (Bairoch and Apweiler, 2000). 

RIO is also available as a webserver at [http://www.rio.wustl.edu/]. For 

increased time efficiency, the pairwise distance and tree calculations are 

parallelized in this version.  

114 

http://www.genetics.wustl.edu/eddy/forester/
http://www.rio.wustl.edu/


 

4.5 Results and Discussion 

4.5.1 Precalculation of pairwise distances 

Pairwise distances to be used in RIO analyses were calculated using the 

“full” alignments (as opposed to the smaller “seed” alignments) from Pfam 6.6 

(August 2001, 3071 families, (Bateman et al., 2000)). The maximum likelihood 

distances were calculated based on the BLOSUM (Henikoff and Henikoff, 1992) 

distance matrices using the TREE-PUZZLE (Strimmer and von Haeseler, 1996) 

software (non-match columns of the alignments were discarded prior to distance 

calculation, as described above). For each family, pairwise distances for 100 

bootstrap samples were prepared. Pfam alignments which were either too short 

or did not include enough sequences were ignored since analyses based on such 

alignments would probably be meaningless. The detailed rules and justifications 

for this selection are as follows: Alignments of an average length of less than 30 

amino acids were ignored, since they are unlikely to contain enough phylogenetic 

signal. For zinc-finger domains this minimal average length was set to 40 amino 

acids (as empirical results have shown, the signal in these is particularly poor). 

Sequences from species not present in the master species tree (see above) were 

removed from the alignments (which results in the rejection of all families 

containing solely viral sequences, since our master species tree does not include 

viruses). Resulting alignments containing less than six sequences were ignored. 

The reason for this is: The addition of sequences to a gene tree can turn 
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sequences which were orthologous to each other into paralogs. (For example, 

imagine an internal node leading to a mouse and a human sequence. Adding a 

yeast sequence to the branch connecting this internal node with the human 

sequence, changes to mouse and human sequences into paralogs.) Thus, the 

smaller an alignment is, the more likely it will result in a incomplete tree in which 

sequences appear orthologous to each other simply due to the absence of certain 

sequences. The threshold of six was chosen arbitrarily. 

Alignments containing more than 600 sequences (after removal of 

sequences from species not present in the master species tree) were dealt with in 

following manner: Sequences not originating from SWISS-PROT were discarded. 

In addition, sequences from certain mammals were excluded (all primates except 

human, mouse, rabbit, hamsters, and goat), since mammals are likely to be over 

represented in most Pfam families (primates and rodents in particular). For 

extremely large families [immunoglobulin domain (PF00047), protein kinase 

domain (PF00069), collagen triple helix repeat (PF01391), and rhodopsin-type 7 

transmembrane receptor (PF00001)], all mammalian sequences except those 

from human and rat were excluded. 

Following the above rules, pairwise distances (and other the files described 

in Appendix B) were precalculated for 2384 alignments from a total of 3071 in 

Pfam 6.6 (75 alignments were too short and 612 alignments did contain less than 

six sequences from species in our master species tree). 
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4.5.2 Phylogenomic analyses of the A. thaliana 

and C. elegans and proteomes 

We used the RIO procedure to analyze the A. thaliana (Arabidopsis-

Initiative, 2000) and C. elegans (C.elegans-Sequencing-Consortium, 1998) 

proteomes in order to get an estimate of the effectiveness of this implementation 

of automated phylogenomics. 

4.5.2.1 Domain structure analysis 

The input for RIO consists of a query protein sequence together with a 

Pfam alignment for the/a protein family to which the query belongs to. Before 

RIO could be applied we therefore had to determine the matching domains for 

each protein in the A. thaliana and C. elegans proteomes. For proteins composed 

of different domains, a RIO analysis has to be performed for each domain 

individually. 

The source for protein sequences were: ATH1.pep.03202001, a flatfile 

database of 25,579 A. thaliana amino acid sequences (hypothetical, predicted and 

experimentally verified) that have been identified as part of the Arabidopsis 

Genome Initiative (AGI) [http://www.arabidopsis.org/info/agi.html], and 

wormpep 43, a flatfile database of 19,730 C. elegans amino acid sequences 

[http://www.sanger.ac.uk/Projects/C_elegans/wormpep/]. 

The program hmmpfam (version 2.2g) from the HMMER package was 

used to search each protein sequence in ATH1.pep.03202001 and wormpep 43 
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against Pfam 6.6. Only domains with a score above the so-called gathering cutoff 

were reported (“cut_ga” option) in order to prevent too many erroneous domain 

assignments (which would make subsequent RIO analyses harder to interpret). 

The sum of domains assigned to the 25,579 A. thaliana protein sequences 

was 17,847 (counting multiple copies of the same domain in one protein as one). 

12,431 sequences matched one domain (containing possibly multiple copies of 

this one domain). 1,982 sequences matched two different domains (containing 

possibly multiple copies of both). 453 sequences matched three or more different 

domains (containing possibly multiple copies of each). Therefore, a total of 

14,866 (58%) sequences from ATH1.pep.03202001 could be assigned to one or 

more Pfam families. 

Similarly, a sum of 12,314 domains was assigned to the 19,769 C. elegans 

protein sequences. 7,698 sequences matched one domain, 1,632 matched two 

different domains, and 388 matched three or more different domains. Thus, 

9,718 (49%) sequences from wormpep 43 could be assigned to one or more Pfam 

families. 

4.5.2.2 RIO analysis 

After it has been determined which domains the proteins in the A. 

thaliana and C. elegans proteomes were likely to contain, RIO was used to 

analyze each protein sequence matching one or more Pfam families. Since the 

precalculated distances described above were used, all the results are based on 

maximum likelihood distances calculated on the BLOSUM matrices and the 
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number of bootstrap resamples is 100. The results from these analyses can be 

found at [http://www.genetics.wustl.edu/eddy/forester/rio_analyses/]. The 

approximate time requirement was between two and three weeks, performed on 

eight Pentium III 800Mhz processors. 

4.5.2.2.1 How many sequences can be analyzed with RIO? 

The first question we tried to answer was how many sequences can be 

analyzed with RIO. For an overview, see Table 4.1. From the 17,847 A. thaliana 

domain sequences matching a Pfam family, 14,905 (84%) could be analyzed with 

RIO using the precalculated distances. 2859 (16%) domain sequences were not 

analyzed because the corresponding Pfam alignments were either too short or did 

not contain enough sequences (as described above). 83 (0.5%) domain sequences 

were not analyzed because the E-value for the match to their profile HMM was 

below the threshold of 0.01. This represents a second filtering step for preventing 

analyzing false domain assignments (besides only analyzing domain sequences 

which score above the gathering cutoff in the domain analysis). (RIO performs a 

preprocessing step before aligning the query sequence to a Pfam alignment, in 

which the program hmmsearch is used to trim the query sequence by searching it 

with the appropriate profile HMM. If the resulting E-value was below 0.01 no 

analysis was performed.) Multiple copies of the same domain in certain 

sequences result in a sum of individual analyses larger then the number of 

analyzed domain sequences. In case of A. thaliana this number was 17,940. 
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Correspondingly, from the 12,314 C. elegans domain sequences matching 

a Pfam family, 11,287 (92%) could be analyzed with RIO using the precalculated 

distances. 901 (7%) domain sequences were not analyzed because the 

corresponding Pfam alignments were either too short or did not contain enough 

sequences. 53 (0.4%) domain sequences were not analyzed because the E-value 

for the match to their profile HMM was below the threshold of 0.01. In addition, 

we did not analyze the 73 C. elegans sequences matching the immunoglobulin 

family (PF00047). It turned out that the phylogenetic signal in this alignment is 

questionable. Furthermore, most of the 73 sequences contain multiple copies of 

the immunoglobulin domain (for example, CE08028 contains 48 

immunoglobulin domains) and we therefore worried that the results from this 

family might skew our overall results. The sum of RIO analyses was 14,740. 

In summary, while RIO itself (using precalculated distances prepared as 

described above) could analyze most of its query sequences, a high number of 

proteins did not match any Pfam family and where therefore precluded from 

being analyzed with RIO. 

 

 Protein 
sequences in 
proteome 

Sum of domains 
assigned to 
proteome 

Domain 
sequences 
analyzed with 
RIO 

Sum of 
individual RIO 
analyses 

A. thaliana  25,579 17,847 14,905 17,940 

C. elegans 19,769 12,314 11,287 14,740 

Table 4.1. Number of domains which can be analyzed with RIO. 

 

120 



 

4.5.2.2.2 RIO analysis of lactate/malate dehydrogenase 

family members 

Second, in order to test that RIO performs well on an “easy” case, RIO was 

used to analyze lactate/malate dehydrogenase family members both in A. 

thaliana and C. elegans. L-Lactate and malate dehydrogenases are members of 

the same protein family (represented in Pfam as ldh for the NAD-binding domain 

and ldh_C for the alpha/beta C-terminal domain), yet they catalyze different 

reactions. L-lactate dehydrogenase (EC 1.1.1.27) catalyzes the following reaction: 

(S)-lactate + NAD+ = pyruvate + NADH (Dennis and Kaplan, 1960). Malate 

dehydrogenase (NAD) (EC 1.1.1.37) catalyzes: (S)-malate + NAD+ = oxaloacetate 

+ NADH (Banaszak and Bradshaw, 1975). NADP-dependent malate 

dehydrogenase (EC 1.1.1.82) utilizes NADP+ as cofactor instead of NAD+ 

(Johnson, 1971; Webb, 1992). According to the Pfam domain analysis described 

above, the A. thaliana proteome contains ten lactate/malate dehydrogenase 

family members, whereas the C. elegans proteome contains three. (In addition, 

C. elegans also contains two putative members of a second lactate/malate 

dehydrogenase family (Jendrossek et al., 1993), ldh_2, which are not discussed 

here.) The RIO output for the A. thaliana protein F12M16_14 analyzed against 

the ldh domain alignment is shown as an example in Figure 4.7. The results are 

summarized in Tables 4.2 and 4.3. Complete RIO output files (as well as NHX 

(Zmasek and Eddy, 2001a) tree files) are available at 

[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/AT_LD

H_MDH/] for A. thaliana and at 

[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/CE_LD
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H_MDH/]. In all cases, distinction between malate dehydrogenase (NAD) and 

lactate dehydrogenase is unquestionable and in accordance with existing 

annotations and BLAST results (data not shown) irrespective which domain (ldh 

or ldh_C) was used for the RIO analysis (which implies that no domain swapping 

occurred over long evolutionary times). Furthermore, the same results are 

achieved whether only the top 1 sequence (the one with the highest orthology 

value, shown in Tables 4.2 and 4.3) or the top 10 sequences are used to transfer 

annotation from. The only likely NADP-dependent malate dehydrogenase is the 

A. thaliana sequence MCK7_20. For some query sequences, the top orthology 

values are low. Yet, all subtree-neighborings above 50% exhibit consensus at 

distinguishing between malate and lactate dehydrogenase. In contrast, a finer 

distinction (e.g. between mitochondrial and cytoplasmic malate dehydrogenase) 

proves more problematic. While there is no case of actual conflict between the 

existing annotation and the RIO results, in many cases there is no compelling 

evidence in the RIO results to confirm the finer distinctions in the existing 

annotations. Obviously, the resolution power of RIO is limited by the given 

annotations and by the number (or even presence) of sequences for each 

sub(sub)family. 
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Sequence                Description                                                                o[%] n[%] s[%]  distance 
--------                -----------                                                                ---- ---- ----  -------- 
MDHM_BRANA/27-173       MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 89  100   89  0.028000 
Q9SPB8_SOYBN/31-177     MALATE DEHYDROGENASE.                                                        87  100   42  0.109080 
MDH_ECOLI/1-145         MALATE DEHYDROGENASE (EC 1.1.1.37).                                          53    0    0  0.458890 
MDH_SALTY/1-145         MALATE DEHYDROGENASE (EC 1.1.1.37).                                          53    0    0  0.468930 
… 
MDHM_CHLRE/60-205       MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 32    2    4  0.358410 
MDHM_RAT/22-168         MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 18    2    0  0.470390 
MDHM_PIG/22-168         MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 18    2    0  0.471480 
MDHM_HUMAN/22-168       MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 18    2    0  0.491850 
MDHM_MOUSE/22-168       MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 18    2    0  0.491910 
O15769_TRYBB/6-151      MALATE DEHYDROGENASE.                                                        14    3    0  0.492340 
Q9VU29_DROME/25-171     MALATE DEHYDROGENASE.                                                         6    3    0  0.718600 
Q9Y7R8_SCHPO/26-173     MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR.                                4    2    0  0.557380 
Q9VEB1_DROME/22-168     CG7998 PROTEIN.                                                               3    0    0  0.455680 
O76731_TRYBB/1-154      GLYCOSOMAL MALATE DEHYDROGENASE.                                              2    1    0  0.726530 
Q9U140_LEIMA/1-153      MALATE DEHYDROGENASE.                                                         2    1    0  0.832380 
MDHC_YEAST/10-176       MALATE DEHYDROGENASE, CYTOPLASMIC (EC 1.1.1.37).                              2    0    0  0.845440 
MDHM_YEAST/15-163       MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                  1    1    0  0.605030 
MDHP_YEAST/1-143        MALATE DEHYDROGENASE, PEROXISOMAL (EC 1.1.1.37).                              1    0    0  0.580820 
MDHG_ORYSA/42-188       MALATE DEHYDROGENASE, GLYOXYSOMAL PRECURSOR (EC 1.1.1.37).                    0   12    0  0.338480 
MDHG_SOYBN/39-185       MALATE DEHYDROGENASE, GLYOXYSOMAL PRECURSOR (EC 1.1.1.37).                    0   12    0  0.350720 
MDHG_CUCSA/42-188       MALATE DEHYDROGENASE, GLYOXYSOMAL PRECURSOR (EC 1.1.1.37).                    0   12    0  0.368460 
MDHG_BRANA/39-185       MALATE DEHYDROGENASE, GLYOXYSOMAL PRECURSOR (EC 1.1.1.37).                    0   12    0  0.424130 
O81609_PEA/77-223       NODULE-ENHANCED MALATE DEHYDROGENASE.                                         0    1    0  0.399520 
O81844_ARATH/80-226     MALATE DEHYDROGENASE PRECURSOR.                                               0    1    0  0.428890 
Q9SN86_ARATH/80-226     MALATE DEHYDROGENASE.                                                         0    1    0  0.428890 
Q9XQP4_TOBAC/91-237     MALATE DEHYDROGENASE PRECURSOR.                                               0    1    0  0.442160 
O81278_SOYBN/92-238     MALATE DEHYDROGENASE.                                                         0    1    0  0.446470 
Q9U8L4_LEIMA/1-71       MALATE DEHYDROGENASE (FRAGMENT).                                              0    1    0  0.468950 
P93106_CHLRE/34-180     NAD-DEPENDENT MALATE DEHYDROGENASE (EC 1.1.1.37) (MALIC DEHYDROGENASE).       0    0    0  0.462200 
MDHM_CAEEL/26-172       PROBABLE MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).         0    0    0  0.483690 
Q9VU28_DROME/20-166     MALATE DEHYDROGENASE.                                                         0    0    0  0.907050 
O59312_PYRHO/1-23       HYPOTHETICAL 40.1 KDA PROTEIN PH1688.                                         0    0    0  1.000670 
MDH_SULAC/1-37          MALATE DEHYDROGENASE (EC 1.1.1.37) (FRAGMENT).                                0    0    0  1.270070 
MDH_RICPR/2-145         MALATE DEHYDROGENASE (EC 1.1.1.37).                                           0    0    0  1.369000 
Q29385_PIG/18-42        LACTATE DEHYDROGENASE-A (FRAGMENT).                                           0    0    0  1.384020 
Q55383_SYNY3/11-154     2-KETOACID DEHYDROGENASE (MALATE DEHYDROGENASE, LACTATE DEHYDROGENASE).       0    0    0  1.468610 
MDH_BACSU/2-147         MALATE DEHYDROGENASE (EC 1.1.1.37) (VEGETATIVE PROTEIN 69) (VEG69).           0    0    0  1.482390 
MDH_CHLVI/1-142         MALATE DEHYDROGENASE (EC 1.1.1.37).                                           0    0    0  1.509210 
MDH_ARCFU/1-142         MALATE DEHYDROGENASE (EC 1.1.1.37).                                           0    0    0  1.523550 
MDH_AERPE/7-145         MALATE DEHYDROGENASE (EC 1.1.1.37).                                           0    0    0  1.531830 
LDH_THEMA/1-140         L-LACTATE DEHYDROGENASE (EC 1.1.1.27).                                        0    0    0  1.545580 
LDH_THEAQ/1-140         L-LACTATE DEHYDROGENASE (EC 1.1.1.27).                                        0    0    0  1.603000 
O67581_AQUAE/11-161     MALATE DEHYDROGENASE.                                                         0    0    0  1.617760 
LDHA_HORVU/41-183       L-LACTATE DEHYDROGENASE A (EC 1.1.1.27) (LDH-A).                              0    0    0  1.618550 
LDHH_RABIT/2-45         L-LACTATE DEHYDROGENASE H CHAIN (EC 1.1.1.27) (LDH-B) (FRAGMENT).             0    0    0  1.618900 
… 

 

Figure 4.7. RIO output for the A. thaliana protein F12M16_14 analyzed 

against the Pfam ldh domain alignment (PF00056). 

The “Sequence” column identifies sequences in the Pfam alignment either by their SWISS-PROT 

“ID” or their TrEMBL “AC” (Bairoch and Apweiler, 2000) with added species information (the 

numbers after the dash are the Pfam domain boundaries added by HMMER). “Description” is the 

“DE” information either from SWISS-PROT or TrEMBL. The number of observed orthologies 

(“o”), subtree-neighborings (“n”), and super-orthologies (“s”) to the query in the 100 

bootstrapped trees are indicated (in %) for the sequences in the Pfam alignment. Furthermore the 

evolutionary distances (average number of amino acid replacements per residue calculated by 

maximum likelihood based on the BLOSUM 62 matrix) between the query and the sequences in 

the Pfam alignment are shown. For space reasons some lines of the output are not shown (“…”) 

(the complete output is available at 

[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/AT_LDH_MDH/]). 

The output is sorted by orthology values. According to this RIO analysis the query sequence is 

likely to be orthologous and a subtree-neighbor to the plant sequences MDHM_BRANA and 

Q9SPB8_SOYBN. In addition, the query is likely to be super-orthologous to MDHM_BRANA. 

The bacterial sequences MDH_ECOLI and MDH_SALTY are also possibly orthologs but no 

subtree-neighbors. Hence, F12M16_14 is very likely to be a malate dehydrogenase and possibly 

mitochondrial. 
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RIO top 1 hit (highest orthology value) 

Domain used for analysis: 

Sequence ID Annotation  

ldh (PF00056) Ldh_C (PF02866) 

dl4665w LDH (LDH1) L-LDH 

(o=91%, n=3%) 

L-LDH 

(o=94%, n=12%) 

F19P19_13 putative MDH MDH 

(o=2%, n=98%) 

cytoplasmic MDH 

(o=40%, n=78%) 

F12M16_14 mitochondrial NAD-

dependent MDH 

mitochondrial MDH 

(o=89%, n=100%) 

mitochondrial MDH 

(o=94%, n=66%) 

T30L20.4 putative glyoxysomal MDH 

precursor 

MDH 

(o=55%, n=0%) 

glyoxysomal MDH 

(o=95%, n=37%) 

K15M2_16 mitochondrial NAD-

dependent MDH, putative 

MDH 

(o=89%, n=100%) 

mitochondrial MDH 

(o=84%, n=80%) 

F1P2_70 Chloroplast NAD-

dependent MDH 

MDH 

(o=87%, n=21%) 

MDH 

(o=85%, n=6%) 

F17I14_150 microbody NAD-dependent 

MDH 

glyoxysomal MDH 

(o=100%, n=100%) 

glyoxysomal MDH 

(o=80%, n=97%) 

MWF20_2 cytoplasmic MDH MDH 

(o=2%, n=100%) 

MDH 

(o=38%, n=75%) 

MIK19_17 cytoplasmic MDH cytoplasmic MDH 

(o=5%, n=99%) 

MDH 

(o=31%, n=84%) 

MCK7_20 NADP-dependent MDH MDH 

(o=60%, n=30%) 

chloroplast NADP-

MDH (EC 1.1.1.82) 

(o=68%, n=82%) 

Table 4.2. RIO analysis of A. thaliana lactate/malate dehydrogenase family 

members. 

Annotations are from ATH1.pep.03202001 (Arabidopsis Genome Initiative 

[http://www.arabidopsis.org/info/agi.html]). “o=” and “n=” are orthology and subtree-

neighboring values for the sequence in the Pfam alignment (ldh or ldh_C) with the highest 

orthology value towards the respective query sequence. LDH stands for L-lactate dehydrogenase. 

MDH stands for malate dehydrogenase. 
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RIO top 1 hit (highest orthology value) 

Domain used for analysis: 

Sequence ID Annotation 

ldh (PF00056) ldh_C (PF02866) 

F13D12.2 

(CE02181) 

LDH (predicted) L-LDH 

(o=75%, n=61%) 

L-LDH (B chain) 

(o=66%, n=23%) 

F20H11.3 

(CE09512) 

Member of the MDH 

protein family (predicted) 

MDH 

(o=42%, n=16%) 

MDH 

(o=53%, n=34%) 

F46E10.10 

(CE20820) 

Putative MDH, possible 

ortholog of H. sapiens 

Hs.75375 gene product 

(cytoplasmic MDH) 

(predicted) 

cytoplasmic MDH 

(o=13%, n=95%) 

MDH 

(o=76%, n=52%) 

Table 4.3. RIO analysis of C. elegans lactate/malate dehydrogenase family 

members. 

Annotations are from WormPDTM (Costanzo et al., 2001) (12/31/2001) 

[http://www.proteome.com/databases/index.html]. For more explanations see Table 4.2. 
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4.5.2.2.3 Sequences with no orthologs in the current 

databases 

Third, we determined the distribution of the top orthology bootstrap 

values. The sequence with the top orthology bootstrap value is the one which is 

most likely to be the true ortholog of the query. If the top orthology bootstrap 

value is low, then the query sequence is likely to have no ortholog in the Pfam 

alignment. These results are summarized in Table 4.4. For example, for 2252 A. 

thaliana query sequences at least one sequence was orthologous in at least 95 out 

of 100 resampled trees. In contrast, for 930 A. thaliana query sequences, no 

sequence was orthologous in more than five out of 100 bootstrapped trees. For 

query sequences with more than one copy of the same domain, each copy had to 

meet the conditions individually in order for the whole query sequence being 

counted to be below or above the threshold. 

It is beyond the scope of this work to attempt to determine threshold 

values for “true orthologs” or “absence of orthologs”. Such thresholds are very 

likely to be different for different Pfam families since families vary in the 

phylogenetic signal their alignment contains. The only conclusion we would like 

to make here is that some sequences which are very likely to be true orthologs to 

the query, exhibit somewhat low orthology bootstrap values (in the range of 70% 

or even lower). 
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Top orthology 
bootstrap values [%] 

A. thaliana 
(total: 14,905) 

C. elegans 
(total: 11,287) 

� 95 2252 922 

� 90 2982 1224 

� 80 4185 1858 

� 70 5198 2393 

� 50 7493 3459 

� 20 2680 4751 

� 10 1360 3171 

� 5 930 2452 

Table 4.4. Top orthology bootstrap values of RIO analyses. 

 

 

 

 

Query sequences with no orthologs in the current databases are candidates 

for wrong functional predictions if such predictions are made solely on sequence 

similarity (as illustrated in Figure 4.1). An example for this is the A. thaliana 

sequence F28P22_13. (Files related to this analysis are available at 

[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/F28P2

2_13/].) This sequence is a zinc-binding dehydrogenase (Pfam: adh_zinc, 

PF00107). F28P22_13 has been annotated in ATH1.pep.03202001 “as putative 

cinnamyl-alcohol dehydrogenase”, based on sequence similarity (its top 10 

BLAST matches are all cinnamyl-alcohol dehydrogenases with E-values in the 

range of 10-94 if analyzed against all non-redundant GenBank CDS 

translations+PDB+SwissProt+PIR+PRF on Jan 2, 2002). Cinnamyl-alcohol 
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dehydrogenase (EC 1.1.1.195) catalyzes the following reaction: cinnamyl alcohol + 

NADP+ = cinnamaldehyde + NADPH (but it can also act on coniferyl alcohol, 

sinapyl alcohol and 4-coumaryl alcohol) in the flavonoid, stilbene and lignin 

biosynthesis pathways (Webb, 1992; Wyrambik and Grisebach, 1979). According 

to the RIO analysis, F28P22_13 has no orthologs (see Figure 4.8 for the 

corresponding tree and Figure 4.9 for the RIO output). Furthermore its subtree-

neighbors above 90%, cinnamyl-alcohol dehydrogenases and NADP-dependent 

alcohol dehydrogenases (EC 1.1.1.2), exhibit only partial consensus (namely that 

of some type of NADP-dependent alcohol dehydrogenase, but not EC 1.1.1.2 or EC 

1.1.1.195). Hence, F28P22_13 is likely to be a (possibly novel) type of NADP-

dependent alcohol dehydrogenase (other than EC 1.1.1.2), possibly a novel type of 

cinnamyl-alcohol dehydrogenase. 

One might expect that each query sequence which appears to have no 

orthologs is connected with scenario similar to the one described above for 

F28P22_13. Yet, this is clearly not the case, for the following reasons: (i) Gene 

duplications might not be followed by functional modification (many Pfam 

families are composed of sequences which have all the same function, at least at 

the resolution of the current annotation). (ii) Some Pfam families are composed 

solely of sequences originating from closely related (or the same) species (such as 

PF02362, the B3 DNA binding domain of higher plants). For such families, query 

sequences from the same species group are expected to have low orthology 

values. In such cases the concept of subtree-neighbors and ultra-paralogs is more 

useful than orthologs. (iii) Erroneous RIO results caused by a insufficient 

phylogenetic signal (due to short sequences, for example) can lead to low 
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orthology values. For this reason, RIO also outputs the average bootstrap value 

for the consensus tree to give the user a hint about the amount of phylogenetic 

signal in the alignment used. 
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Figure 4.8. A phylogenetic tree for zinc-binding dehydrogenases produced 

by RIO. 

This tree is based on the Pfam alignment adh_zinc (PF00107) and is a subtree of a larger tree. It 

has been calculated by the neighbor joining method (Felsenstein, 2001) using maximum 

likelihood pairwise distances (Strimmer and von Haeseler, 1996) based on the BLOSUM 62 
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matrix (Henikoff and Henikoff, 1992). Gene duplication are indicated by circles (inferred by our 

SDI algorithm (Zmasek and Eddy, 2001b)). The tree was rooted by minimizing the sum of 

duplications. The tree image was produced by ATV (Zmasek and Eddy, 2001a). Species are 

represented by their SWISS-PROT abbreviations (ARATH: Arabidopsis thaliana, TOBAC: 

Nicotiana tabacum, MAIZE: Zea mays, MYCTU: Mycobacterium tuberculosis, BACSU: Bacillus 

subtilis, LEIMA: Leishmania major, HELPY: Helicobacter pylori, SYNY3: Synechocystis sp. 

strain PCC 6803, YEAST: Saccharomyces cerevisiae, KLULA: Kluyveromyces lactis, KLUMA: 

Kluyveromyces marxianus, CANAL: Candida albicans, EMENI: Emericella nidulans, SCHPO: 

Schizosaccharomyces pombe, CAEEL: Caenorhabditis elegans, BACST: Bacillus 

stearothermophilus). The A. thaliana query sequence F28P22_13 is labeled with Q. The 

bootstrap orthology values for potential orthologs are indicated in brackets. According to this 

tree, F28P22_13 has no orthologs. 

131 



 

 

Sequence                Description                                                                o[%] n[%] s[%]  distance 
--------                -----------                                                                ---- ---- ----  -------- 
YAHK_ECOLI/14-343       HYPOTHETICAL ZINC-TYPE ALCOHOL DEHYDROGENASE-LIKE PROTEIN IN BETT-PRPR IN     1   98    0  0.923480 
                        TERGENIC REGION.                                                           
P71306_ECOLI/14-343     SIMILAR TO CINNAMYL-ALCOHOL DEHYDROGENASE OF P. CRISPUM.                      1   98    0  0.923760 
XYLB_PSEPU/14-365       ARYL-ALCOHOL DEHYDROGENASE (EC 1.1.1.90) (BENZYL ALCOHOL DEHYDROGENASE) (     1    1    1  1.768320 
                        BADH).                                                                     
Q9SJ10_ARATH/18-348     PUTATIVE CINNAMYL-ALCOHOL DEHYDROGENASE.                                      0   99    0  0.788690 
Q9SJ25_ARATH/18-349     PUTATIVE CINNAMYL-ALCOHOL DEHYDROGENASE.                                      0   99    0  0.801010 
CAD1_ARATH/24-353       CINNAMYL-ALCOHOL DEHYDROGENASE 1 (EC 1.1.1.195) (CAD).                        0   99    0  0.813150 
CAD2_ARATH/20-349       CINNAMYL-ALCOHOL DEHYDROGENASE ELI3-1 (EC 1.1.1.195) (CAD).                   0   99    0  0.888760 
O65621_ARATH/25-354     CINNAMYL ALCOHOL DEHYDROGENASE-LIKE PROTEIN, SUBUNIT A (CINNAMYL ALCOHOL      0   99    0  0.905050 
                        DEHYDROGENASE-LIKE PROTEIN, LCADA).                                        
CAD3_ARATH/20-349       CINNAMYL-ALCOHOL DEHYDROGENASE ELI3-2 (EC 1.1.1.195) (CAD).                   0   99    0  0.911850 
CAD4_TOBAC/21-350       CINNAMYL-ALCOHOL DEHYDROGENASE (EC 1.1.1.195) (CAD).                          0   99    0  0.996520 
CAD9_TOBAC/21-350       CINNAMYL-ALCOHOL DEHYDROGENASE (EC 1.1.1.195) (CAD).                          0   99    0  0.998400 
CADH_MAIZE/21-350       CINNAMYL-ALCOHOL DEHYDROGENASE (EC 1.1.1.195) (CAD) (BROWN-MIDRIB 1 PROTE     0   99    0  1.036040 
                        IN).                                                                       
CAD4_ARATH/22-351       CINNAMYL-ALCOHOL DEHYDROGENASE 2 (EC 1.1.1.195) (CAD).                        0   99    0  1.039940 
ADH_MYCTU/15-343        NADP-DEPENDENT ALCOHOL DEHYDROGENASE (EC 1.1.1.2).                            0   98    0  0.935120 
O06007_BACSU/18-346     NADP-DEPENDENT ALCOHOL DEHYDROGENASE.                                         0   98    0  0.955200 
Q9U1F0_LEIMA/16-346     NADP-DEPENDENT ALCOHOL HYDROGENASE.                                           0   98    0  0.968460 
O25732_HELPY/16-343     CINNAMYL-ALCOHOL DEHYDROGENASE ELI3-2 (CAD).                                  0   97    0  1.123840 
YM97_YEAST/20-353       HYPOTHETICAL ZINC-TYPE ALCOHOL DEHYDROGENASE-LIKE PROTEIN IN PRE5-FET4 IN     0   76    0  1.388040 
                        TERGENIC REGION.                                                           
YCZ5_YEAST/20-354       HYPOTHETICAL ZINC-TYPE ALCOHOL DEHYDROGENASE-LIKE PROTEIN YCR105W (EC 1.1     0   76    0  1.439990 
                        .1.-).                                                                     
P74721_SYNY3/13-333     ZINC-CONTAINING ALCOHOL DEHYDROGENASE FAMILY.                                 0   60    0  1.354540 
YJGB_ECOLI/15-337       HYPOTHETICAL ZINC-TYPE ALCOHOL DEHYDROGENASE-LIKE PROTEIN IN GNTV-LEUX IN     0   60    0  1.368110 
                        TERGENIC REGION (ORF1).                                                    
P95153_MYCTU/25-346     ADHA.                                                                         0    9    0  1.931400 
ADH3_BACST/12-336       ALCOHOL DEHYDROGENASE (EC 1.1.1.1) (ADH-HT).                                  0    8    0  1.272530 
… 

 

Figure 4.9. RIO output for the A. thaliana protein F28P22_13 analyzed 

against the Pfam adh_zinc domain alignment (PF00107). 

For an explanation of the output see Figure 4.7. For space reasons some lines of the output are 

not shown (“…”) (the complete output is available at 

[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/F28P22_13/]). The 

output is sorted by orthology values. According to this RIO analysis the query sequence is likely to 

have no orthologs in this alignment. In contrast, the query probably has subtree-neighbors which 

are cinnamyl-alcohol dehydrogenases (EC 1.1.1.195), NADP-dependent alcohol dehydrogenases 

(EC 1.1.1.2), as well as other zinc-containing alcohol dehydrogenases. 

4.5.2.2.4 Inconsistency between orthology bootstrap values 

and sequence similarity 

Forth, we were interested in the number of sequences in the two 

proteomes for which the orthology bootstrap values do not correspond to 

sequence similarity (Table 4.5). Such disagreements can be caused by the 

situation illustrated in Figure 4.2. To determine these numbers, we used to 

following rules. Two thresholds for orthology bootstrap values were chosen: O, 

the minimum for being an ortholog (e.g. 90%) and N, the maximum for not being 
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an ortholog (e.g.10%). Furthermore, a maximal ratio R for the distance of the 

query to non-orthologs to the distance of the query to orthologs was chosen (e.g. 

0.5). In order for being counted as exhibiting disagreement between the 

orthology bootstrap values and sequence similarity a query sequence had to fulfill 

the following two conditions: (i) it must have a least one ortholog with bootstrap 

orthology value above or equal to O, and (ii) all sequences in the alignment with 

bootstrap orthology values above N, must have distance ratios smaller or equal to 

R for at least one sequence with bootstrap orthology lower or equal to N. 

Sequences from the following species were ignored in this analysis (since they 

were the species of the query sequence or related to it): A. thaliana proteome: 

Rosidae (A. thaliana, Pisum sativum, Glycine max, Cucurbita maxima, Cucumis 

sativus, Brassica campestris, Brassica napus, Citrus unshiu, Citrus sinensis, 

Theobroma cacao, Gossypium hirsutum); C. elegans proteome: nematodes (C. 

elegans, Caenorhabditis briggsae, Haemonchus contortus, Ascaris suum). 

 

 

Thresholds Number of query sequences 

O N R A. thaliana C. elegans 

90% 10% 0.5 128 19 

90% 10% 0.8 328 102 

80% 20% 0.5 254 45 

Table 4.5. The numbers of sequences for which the orthology bootstrap 

values do not correspond to sequence similarity. 
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Manual inspection of the RIO output leads to the following, somewhat 

unexpected, conclusion. In many cases a discrepancy between orthology 

bootstrap values and sequence similarity is caused by orthologs in only 

phylogenetically distant (relatively to the query sequence) species. This can lead 

to errors if functional annotation is blindly transferred from these orthologs to 

the query. As an example of this, the results of analyzing the A. thaliana O-

methyltransferase F16P17_38 are shown in Figures 4.10 and 4.11. (Complete files 

are at 

[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/F16P17_38/].) 

Even though the F16P17_38 sequence is orthologous to the bacterial 

hydroxyneurosporene methyltransferases (EC 2.1.1.-) (Armstrong et al., 1989) it 

would be dangerous to annotate is as such. A more reasonable annotation for this 

query would be to annotate it based on subtree-neighbors and hence call it a 

plant O-methyltransferase. An indication of this problem (besides a discrepancy 

between orthology bootstrap values and sequence similarity) is the meeting of the 

following three conditions: A query sequence has (i) likely orthologs and (ii) 

likely subtree-neighbors in other species than the query itself, yet (iii) there is no 

significant overlap between the orthologs and the subtree-neighbors. 

We were unable to find convincing examples in the C. elegans and A. 

thaliana proteomes where wrong sequence similarity based annotations might be 

caused by unequal rates of evolution (as illustrated in Figure 4.2). This is not to 

say that such cases do not exist in those two proteomes but are likely to be quite 

rare. Similarly to the issues described in the previous section, the detection of 

such examples is complicated by the fact that for many cases in which a 
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discrepancy between orthology bootstrap values and sequence similarity exists, 

all sequences in the Pfam alignment appear to have to same function, the Pfam 

family is lineage specific, or the annotations are too poor/confusing to make any 

kind of inference. 
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Figure 4.10. A phylogenetic tree for O-methyltransferases produced by RIO. 

This tree is based on the Pfam alignment Methyltransf_2 (PF00891). It has been constructed in 

the same manner as the tree in Figure 4.8. (TOBAC: Nicotiana tabacum, ARATH: Arabidopsis 

thaliana, MAIZE: Zea mays, HORVU: Hordeum vulgare, WHEAT: Triticum aestivum, PEA: 

Pisum sativum, RHOSH: Rhodobacter sphaeroides, RHOCA: Rhodobacter capsulatus, BOVIN: 

Bos taurus, CHICK: Gallus gallus, RAT: Rattus norvegicus, MYCTU: Mycobacterium 

tuberculosis.). The A. thaliana query sequence F16P17_38 is labeled with Q. The bootstrap 

orthology values for potential orthologs are indicated in brackets (the brightness of the green 

color is proportional to this value). The apparent trifurcation at the root is caused by a branch 

length of 0.0 (the bacterial hydroxyneurosporene methyltransferases subtree and the plant O-

methyltransferases subtree are connected by a speciation event). Inferred gene duplication are 

indicated by circles. According to this tree, F16P17_38 has orthologs only in bacteria. 
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Sequence                Description                                                                o[%] n[%] s[%]  distance 
--------                -----------                                                                ---- ---- ----  -------- 
Q9RFC4_RHOSH/112-349    CRTF.                                                                        93    0    0  1.666990 
CRTF_RHOCA/137-367      HYDROXYNEUROSPORENE METHYLTRANSFERASE (EC 2.1.1.-) (O-METHYLASE).            93    0    0  1.707230 
CRTF_RHOSH/109-346      HYDROXYNEUROSPORENE METHYLTRANSFERASE (EC 2.1.1.-) (O-METHYLASE).            93    0    0  1.713780 
Q96565_HORVU/110-352    CAFFEIC ACID O-METHYLTRANSFERASE (EC 2.1.1.6) (CATECHOL O- METHYLTRANSFER    19   43    0  0.913640 
                        ASE) (0-METHYLTRANSFERASE).                                                
O53764_MYCTU/71-316     PUTATIVE METHYLTRANSFERASE.                                                  10    0    0  1.602520 
O95671_HUMAN/349-595    ASMTL PROTEIN.                                                                3    0    0  1.580280 
O09179_RAT/80-322       HYDROXYINDOLE-O-METHYLTRANSFERASE (EC 2.1.1.4) (ACETYLSEROTONIN O- METHYL     3    0    0  1.674460 
                        TRANSFERASE) (HYDROXYINDOLE O-METHYLTRANSFERASE).                          
HIOM_HUMAN/79-322       HYDROXYINDOLE O-METHYLTRANSFERASE (EC 2.1.1.4) (HIOMT) (ACETYLSEROTONIN O     3    0    0  1.749550 
                        -METHYLTRANSFERASE) (ASMT).                                                
HIOM_BOVIN/79-322       HYDROXYINDOLE O-METHYLTRANSFERASE (EC 2.1.1.4) (HIOMT) (ACETYLSEROTONIN O     3    0    0  1.764290 
                        -METHYLTRANSFERASE) (ASMT).                                                
HIOM_CHICK/81-323       HYDROXYINDOLE O-METHYLTRANSFERASE (EC 2.1.1.4) (HIOMT) (ACETYLSEROTONIN O     3    0    0  1.787620 
                        -METHYLTRANSFERASE) (ASMT).                                                
Q9SRD4_ARATH/100-342    PUTATIVE CATECHOL O-METHYLTRANSFERASE.                                        0  100    0  0.526350 
O49964_ARATH/97-338     O-METHYLTRANSFERASE 1.                                                        0   72    0  0.632160 
Q42958_TOBAC/99-340     CATECHOL O-METHYLTRANSFERASE (EC 2.1.1.6).                                    0   72    0  0.639820 
Q04065_TOBAC/99-340     CATECHOL O-METHYLTRANSFERASE.                                                 0   72    0  0.649210 
Q42949_TOBAC/100-342    CATECHOL O-METHYLTRANSFERASE (EC 2.1.1.6).                                    0   72    0  0.663620 
COMT_MAIZE/100-341      CAFFEIC ACID 3-O-METHYLTRANSFERASE (EC 2.1.1.68) (S-ADENOSYSL-L- METHIONI     0   72    0  0.721520 
                        NE:CAFFEIC ACID 3-O-METHYLTRANSFERASE) (COMT).                             
Q9SCP7_ARATH/93-336     CAFFEIC ACID O-METHYLTRANSFERASE-LIKE PROTEIN.                                0   37    0  0.988010 
Q9ZU24_ARATH/96-339     F5F19.5 PROTEIN.                                                              0   36    0  0.701190 
Q9T003_ARATH/103-358    O-METHYLTRANSFERASE-LIKE PROTEIN.                                             0    2    0  0.974450 
Q9T002_ARATH/46-301     O-METHYLTRANSFERASE-LIKE PROTEIN.                                             0    2    0  1.100820 
ZRP4_MAIZE/94-341       O-METHYLTRANSFERASE ZRP4 (EC 2.1.1.-) (OMT).                                  0    2    0  1.116310 
O24305_PEA/93-337       6A-HYDROXYMAACKIAIN METHYLTRANSFERASE.                                        0    2    0  1.182120 
Q43771_HORVU/117-367    CATECHOL O-METHYLTRANSFERASE (EC 2.1.1.6).                                    0    2    0  1.264630 
Q9ZRC1_WHEAT/97-359     O-METHYLTRANSFERASE.                                                          0    2    0  1.270800 
O49010_MAIZE/90-340     HERBICIDE SAFENER BINDING PROTEIN.                                            0    2    0  1.530230 

 

Figure 4.11. RIO output for the A. thaliana protein F16P17_38 analyzed 

against the Pfam Methyltransf_2 domain alignment (PF00891). 

For an explanation of the output see Figure 4.7. The output is sorted by orthology values. 

According to this RIO analysis the orthologs of F16P17_38 are bacterial hydroxyneurosporene 

methyltransferases. These contrast with the subtree-neighbors of F16P17_38 which are all plant 

O-methyltransferases. 
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4.6 Conclusions 

In this work we present RIO, a procedure for automated phylogenomics, in 

particular – automated orthology detection. A major caveat of all phylogenetic 

analyses is the unreliability of the resulting trees. Therefore, inference of gene 

duplications is performed over bootstrap resampled phylogenetic trees to 

estimate the reliability of the orthology assignments. In addition, we introduce 

supplementary concepts which may be useful for functional prediction: super-

orthologs, ultra-paralogs and subtree-neighbors. Initial testing and evaluation of 

RIO was performed by analyzing the A. thaliana and C. elegans proteomes. 

It appears that the RIO procedure is particularly useful for the detection of 

first representatives of novel protein subfamilies. Sequence similarity based 

methods can be misleading in these cases since every query is always “most 

similar to something”, whereas RIO can detect the absence of orthologs. 

Super-orthology is a very stringent criterion. If a query sequence is likely 

to have super-orthologs, they represent an excellent source to transfer functional 

annotation from. In contrast, the absence of super-orthologs does not imply that 

a function for a query sequence cannot be inferred (in the two proteomes 

analyzed in this work, most sequences appear to have no super-orthologs in Pfam 

6.6). 

Ultra-paralogs are sequences in the same species as the query and are 

likely to be the result of recent duplications and therefore might not have yet 

undergone much functional divergence. Operationally, splice variants can also be 
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thought of as ultra-paralogs (at least as long as protein sequences are 

considered). 

Subtree-neighbors have two uses: (i) The commonly used “subtree 

concept”: If the subtree-neighbors of the query sequence exhibit (partial) 

consensus in their functional annotations, the elements in which they agree 

might be used the infer a (partial) function for the query. This is useful for query 

sequences which are appear to have no orthologs in the current databases. (ii) 

For query sequences which do have orthologs, absence of overlap between the 

sequences considered orthologous and those which appear to be subtree-

neighbors should be treated as a red flag. It might indicate that the orthologs are 

in phylogenetically distant species relative to the query. Transferring annotation 

from such orthologs is risky. In this case, subtree-neighbors are a more reliable 

source to transfer annotation from. 

RIO outputs warnings if the distance of the query sequence to other 

sequences is unusually short or long. The usefulness of this was not investigated 

in this work. 

A RIO procedure based on Pfam alignments analyzes each protein domain 

individually since Pfam is protein family database based on individual domains 

(Bateman et al., 2000). While this seems to be a disadvantage it also has a 

powerful advantage: Due to domain shuffling many proteins are mosaic proteins, 

proteins composed of domains with different evolutionary histories (Doolittle, 

1985; Patthy, 1985). For such proteins it makes much sense to analyze each 

domain individually Furthermore, mosaic proteins from sufficiently distant 

species might be impossible to be aligned over more than one domain at the time, 
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since they are unlikely to exhibit the same domain organization. The same is true 

for multiple copies of the same domain in protein: Each of them are analyzed 

individually (such proteins oftentimes differ in their number of domain copies 

and could therefore not be aligned from end to end for the whole family). 

RIO’s most serious drawback is its reliance on a reasonably strong 

phylogenetic signal in the alignment. Additionally, if the alignment does not 

contain enough sequences, the result might be meaningless. RIO is obviously also 

dependent on the quality of the species tree used (in particular for C. elegans: 

currently, it is not clear whether a clade including both nematodes and 

arthropods exists, the so called ecdysozoa; or whether a more classic view of 

animal evolution holds true). 

In order to make RIO more time efficient it can use precalculated pairwise 

distances. This allows analyzing a complete proteome in a few weeks utilizing 

about ten average personal computers. One query sequence can be analyzed 

against an alignment of 221 sequences in about two minutes on one average PC 

(Pentium III, 800Mhz). In order for RIO to be used on-line we produced a 

parallelized version. 

In general, the concept of “consensus” is very important in this work (for 

example consensus between subtree-neighbors, or between subtree-neighbors 

and orthologs). A useful future extension would be to incorporate automated 

consensus detection into RIO. This would include annotation of internal nodes of 

a gene tree with a “biological function”. Automated consensus detection is trivial 

for a highly formalized notation system, such as EC numbers (the consensus of 

EC 1.1.1.3 and EC 1.1.1.23 is EC 1.1.1, a oxidoreductase acting on the CH-OH 
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group of donors with NAD+ or NADP+ as acceptor (Webb, 1992)). Obviously, it is 

much more difficult to analyze natural language annotations in the same manner, 

yet this could be accomplished by utilizing the set of structured vocabularies of 

the Gene Ontology (GO) project (Gene-Ontology-Consortium, 2001) 

[http://www.geneontology.org/]. 
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4.8 Appendix A: Precalculation of 

pairwise distances 

 

Input: Pfam full alignment A. 

Output: “aln” file containing modified full alignment 

“hmm” file containing a profile HMM 

“nbd” file containing pairwise distances 

“bsp” file bootstrap positions file 

“pwd” file containing pairwise distances for bootstrap resampled 

alignment 

 

1. If necessary: remove certain sequences (species not in master species tree) 

from alignment A. 

2. If A does not contain enough sequences (<6), abort. 

3. Run hmmbuild on A, resulting in alignment A’ (using the same options as 

were used to build the original HMM for A). 

4. Keep A’ as “aln” file. 

5. Run hmmbuild with “--hand” option on A’, resulting in HMM H’ (using the 

same options as were used to build the original HMM for A). 

6. Calibrate H’ with hmmcalibrate and keep as “hmm” file. 

7. remove non-match columns from A’, resulting in alignment A’’. 
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8. Calculate pairwise distances for A’’, resulting in the “nbd” file (non-

bootstrapped distances). 

9. Bootstrap resample A’’, resulting in the “bsp” file (bootstrap positions file). 

10. Calculate pairwise distances for bootstrapped A’’, resulting in the “pwd” file. 
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4.9 Appendix B: Speciation Duplication 

Inference combined with rooting 

 

Input : binary gene tree G, rooted binary species tree S. 

Output: G with "duplication" or "speciation" assigned to each internal node 

and rooted in such a way that the sum of duplications is minimized. 

 

SDIunrooted( G, S ) 

root gene tree G at the midpoint of a branch of choice; 

set B = getBranchesInOrder( G ); 

SDIse( G, S ) [see chapter 3 or (Zmasek and Eddy, 2001b)]; 

for each branch b in B: 

set n1 = child 1 of root of G; 

set n2 = child 2 of root of G; 

root G at the midpoint of branch b; 

updateM( n1, n2 ); 

if ( sum of duplications in G < dmin ): 

set dmin = sum of duplications in G; 

set Gdmin = G; 

return Gdmin; 
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updateM( n1, n2 ) 

set r = root of G; 

if ( child 1 of r == n1 || child 2 of r == n1 ): 

calculateMforNode( n1 ); 

else: 

calculateMforNode( n2 ); 

calculateMforNode( r ); 

 

calculateMforNode( n ) 

if ( !n.isExternal() ): 

set a = M( child 1 of n ); 

set b = M( child 2 of n ); 

while ( a != b ): 

if ( a > b ): 

set a = parent of a; 

else: 

set b = parent of b; 

set M( n ) = a; 

if ( M( n ) == M( child 1 of n ) || M( n ) == M( child 2 of n ): 

n is duplication; 

else: 

n is speciation; 
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getBranchesInOrder( G ) 

set n = root of G; 

set i = 0; 

while !( n == root && indicator of n == 2 ): 

if ( n != external && indicator of n != 2 ): 

if ( indicator of n == 0 ): 

set indicator of n = 1; 

set n = child 1 of n; 

else: 

set indicator of n = 2; 

set n = child 2 of n; 

if ( parent of n != root ): 

set B[ i ] = branch connecting n and parent of n; 

else: 

set B[ i ] = branch connecting child 1 of root and child 

2 of root; 

set i = i + 1; 

else: 

if ( parent of n != root && n != external ): 

set B[ i ] = branch connecting n and parent of n; 

set i = i + 1; 

set n = parent of n; 

return B; 
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5  Conclusions and future 

directions 

In this work, RIO, a procedure for automated phylogenomics was 

developed and evaluated. 

As pointed out in chapter 4, RIO is particularly useful for the automated 

detection of first representatives of previously unknown protein subfamilies. 

Additionally, RIO can be used to prioritize further (experimental) studies. RIO 

allows to automatically scan for proteins which show “unexpected” properties 

(such as unusual branch lengths, inconsistency between similarity and 

orthology, inconsistency between subtree-neighbors and orthologs). On the 

other hand, RIO can also be employed to scan for the opposite, namely 

sequences which do not show any unusual properties and for which a function 

can be inferred with confidence. 

The resolution which is achievable with RIO is dependent primarily on 

three things: (i) the amount of phylogenetic signal in the alignment used for tree 

construction, (ii) the resolution with which the sequences in this alignment are 

annotated, and (iii) the number of sequences in the alignment. 

Related to the question of resolution is the issue of the “transitive 

annotation catastrophe”. This is caused by automated annotation systems which 

are prone to propagate erroneous annotations from one sequence to another, 

leading to an exponentially growing number of misannotated sequences. As for 
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similarity based methods, RIO is expected to be less prone to already existing 

incorrect predictions if instead of “top 1” hits, only information based on 

consensus is used. Furthermore, one might expect that a system like RIO is less 

likely to spread wrong annotations since its results can easily be interpreted to 

determine whether added annotation (besides family membership) is reasonable 

or not (absence of orthologs and/or absence of consensus). This is of course only 

true as long as the number of misannotated sequences is small compared to the 

number of correctly annotated ones. 

Besides incorporating automated consensus detection into RIO, as 

discussed in section 4.6, the following future developments might prove to be of 

some value. 

Biochemical- and signaling-pathway analysis: Whereas functional 

prediction for individual sequences is an important and difficult task, detailed 

knowledge about sequence function is only one step towards the even more 

important goal of biochemical- and signaling-pathway analysis and 

reconstruction (and simulation). This, of course, is a precondition for rational 

pathway engineering and whole organism analysis and simulation. Combining 

RIO with a protein function database (containing information about the 

substrates and products for each known enzyme, targets and effectors for 

signaling proteins) could eventually lead to the automated reconstruction of 

pathways. 

Association of sequence patterns with biological functions: Overlaying 

biological properties as well as amino acid sequences over a gene tree could be 

used to determine the sequence pattern(s) associated with a given biological 
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property associated with a subtree/subfamily. While this is obviously not tied to 

the RIO procedure as such, it is another example of how phylogenetic analysis 

could be used for sequence analysis. 

Curated subtree definitions: This is a possible addition to a protein or 

domain alignment database (such as Pfam), allowing for subtree/subfamily-level 

classification. In this approach, subtrees are defined by two so-called "outposts". 

The "outposts" of a given subtree are sequences whose last common ancestor is 

thought to be the ancestral sequence of the subtree. For example, the BAX 

subfamily in Figure 1.6 could be defined by the following two "outposts": 

"BAXA_MOUSE" and "BAXD_HUMAN". Combining this approach with 

phylogenomics makes it straight forward to determine whether a query sequence 

is a first representative of a novel subfamily or whether it belongs to a defined 

subtree (as well as to determine to which subtree it belongs to). 
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